نتایج جستجو برای: semantic image retrieval
تعداد نتایج: 537468 فیلتر نتایج به سال:
Computer-assisted image retrieval applications could assist radiologist interpretations by identifying similar images in large archives as a means to providing decision support. However, the semantic gap between low-level image features and their high level semantics may impair the system performances. Indeed, it can be challenging to comprehensively characterize the images using low-level imag...
Content Based Image Retrieval (CBIR) is an important research area in the field of multimedia information retrieval. The application of CBIR in the medical domain has been attempted before, however the use of CBIR in medical diagnostics is a daunting task. The goal of diagnostic medical image retrieval is to provide diagnostic support by displaying relevant past cases, along with proven patholo...
This paper presents the results of the University at Buffalo in the 2006 ImageCLEFmed task. Our approach for this task combines Content Based Image Retrieval (CBIR) and text retrieval to improve retrieval of medical images. Our results are comparable to other approaches presented in the task. Our results show that text retrieval performs well across the three different types of topics (visual, ...
One of the challenges in the field of content-based image retrieval is to bridge the semantic gap that exists between the information extracted from visual data using classifiers, and the interpretation of this data made by the end users. The semantic gap is a cascade of 1) the transformation of image pixels into labelled objects and 2) the semantic distance between the label used to name the c...
This paper presents some hybrid approaches for visual information retrieval that combine image low-level feature analysis with semantic descriptors of image content. The aim of this proposal is to improve retrieval process by reducing nonsense results to user query. In the proposed approach user may submit textual queries, which are converted to image characteristics providing in this way searc...
Computer-assisted image retrieval applications can assist radiologists by identifying similar images in archives as a means to providing decision support. In the classical case, images are described using low-level features extracted from their contents, and an appropriate distance is used to find the best matches in the feature space. However, using low-level image features to fully capture th...
-In present time, digital image libraries and other multimedia databases have been suddenly expanded. Therefore Semantic gap that between the visual features and human semantics has become very important area of research known as content based image retrieval (CBIR). If there is a need of retrieving an image from a large image database effectively and precisely, the development of content-based...
Content-based image retrieval (CBIR) has been an active research topic in the last decade. In this paper we proposed an image retrieval method using global and local features. Firstly, for local features extraction, SURF algorithm produces a set of interest points for each image and a set of 64-dimensional descriptors for each interest points and then to use Bag of Visual Words model, a cluster...
with quick development of digital images and the availability of imaging tools, massive amounts of images are created. therefore, efficient management and suitable retrieval, especially by computers, is one of themost challenging fields in image processing. automatic image annotation (aia) or refers to attaching words, keywords or comments to an image or to a selected part of it. in this paper,...
نمودار تعداد نتایج جستجو در هر سال
با کلیک روی نمودار نتایج را به سال انتشار فیلتر کنید