In this article, we study the following anisotropic p-Laplacian equation with variable exponent given by \begin{equation*} (P) \begin{cases} -\Delta_{H,p}u =\frac{\lambda f(x)}{u^{q(x)}}+g(u) \ \text{ in }\Omega,\\ u > 0 }\Omega,\ u=0\text{ on }\partial\Omega, \end{cases} \end{equation*} under assumption $\Omega$ is a bounded smooth domain $\mathbb{R}^N$ $p,N\geq 2$, $\lambda>0$ and $0 < q \in ...