نتایج جستجو برای: preconditioned matrix

تعداد نتایج: 367346  

Journal: :SIAM J. Scientific Computing 2013
John W. Pearson Martin Stoll

PDE-constrained optimization problems, and the development of preconditioned iterative methods for the efficient solution of the arising matrix system, is a field of numerical analysis that has recently been attracting much attention. In this paper, we analyze and develop preconditioners for matrix systems that arise from the optimal control of reaction-diffusion equations, which themselves res...

2004
K. K. Phoon K. C. Toh X. Chen

Generalized Jacobi (GJ) diagonal preconditioner coupled with symmetric quasi-minimal residual (SQMR) method has been demonstrated to be efficient for solving the 2 · 2 block linear system of equations arising from discretized Biot s consolidation equations. However, one may further improve the performance by employing a more sophisticated non-diagonal preconditioner. This paper proposes to empl...

2013
Yang Cao Linquan Yao Meiqun Jiang Qiang Niu

In this paper, a relaxed Hermitian and skew-Hermitian splitting (RHSS) preconditioner is proposed for saddle point problems from the element-free Galerkin (EFG) discretization method. The EFG method is one of the most widely used meshfree methods for solving partial differential equations. The RHSS preconditioner is constructed much closer to the coefficient matrix than the well-known HSS preco...

2012
Yuping Zeng Chenliang Li

In this paper, we provide new preconditioner for saddle point linear systems with (1,1) blocks that have a high nullity. The preconditioner is block triangular diagonal with two variable relaxation paremeters and it is extension of results in [1] and [2]. Theoretical analysis shows that all eigenvalues of preconditioned matrix is strongly clustered. Finally, numerical tests confirm our analysis.

2008
MICOL PENNACCHIO M. PENNACCHIO

We study substructuring preconditioners for the linear system arising from the discretization of parabolic problems when the mortar method is applied. By using a suitable non standard norm equivalence we build an efficient edge block preconditioner and we prove a polylogarithmic bound for the condition number of the preconditioned matrix.

Journal: :SIAM J. Scientific Computing 2006
H. Sue Dollar Andrew J. Wathen

We consider the application of the conjugate gradient method to the solution of large, symmetric indefinite linear systems. Special emphasis is put on the use of constraint preconditioners and a new factorization that can reduce the number of flops required by the preconditioning step. Results concerning the eigenvalues of the preconditioned matrix and its minimum polynomial are given. Numerica...

2002
Jae Heon Yun Yu Du Han

We propose variants of the modified incomplete Cholesky factorization preconditioner for a symmetric positive definite (SPD) matrix. Spectral properties of these preconditioners are discussed, and then numerical results of the preconditioned CG (PCG) method using these preconditioners are provided to see the effectiveness of the preconditioners.

Journal: :SIAM J. Scientific Computing 1998
James G. Nagy Dianne P. O'Leary

Restoration of images that have been blurred by the effects of a Gaussian blurring function is an ill-posed but well-studied problem. Any blur that is spatially invariant can be expressed as a convolution kernel in an integral equation. Fast and effective algorithms then exist for determining the original image by preconditioned iterative methods. If the blurring function is spatially variant, ...

Journal: :SIAM J. Matrix Analysis Applications 2004
Valeria Simoncini Michele Benzi

In this paper we derive bounds on the eigenvalues of the preconditioned matrix that arises in the solution of saddle point problems when the Hermitian and skew-Hermitian splitting preconditioner is employed. We also give sufficient conditions for the eigenvalues to be real. A few numerical experiments are used to illustrate the quality of the bounds.

Journal: :Numerische Mathematik 1999
Chun-Hua Guo

The application of the finite difference method to approximate the solution of an indefinite elliptic problem produces a linear system whose coefficient matrix is block tridiagonal and symmetric indefinite. Such a linear system can be solved efficiently by a conjugate residual method, particularly when combined with a good preconditioner. We show that specific incomplete block factorization exi...

نمودار تعداد نتایج جستجو در هر سال

با کلیک روی نمودار نتایج را به سال انتشار فیلتر کنید