نتایج جستجو برای: prabhakar fractional derivative
تعداد نتایج: 120331 فیلتر نتایج به سال:
Every infinitely divisible law defines a convolution semigroup that solves an abstract Cauchy problem. In the fractional Cauchy problem, we replace the first order time derivative by a fractional derivative. Solutions to fractional Cauchy problems are obtained by subordinating the solution to the original Cauchy problem. Fractional Cauchy problems are useful in physics to model anomalous diffus...
In this paper, the fractional Sturm-Liouville problems, in which the second order derivative is replaced by a fractional derivative, are derived by the Homotopy perturbation method. The fractional derivatives are described in the Caputo sense. The present results can be implemented on the numerical solutions of the fractional diffusion-wave equations. Numerical results show that HPM is effectiv...
We consider a Cauchy problem for a fractional semilinear differential inclusions involving Caputo’s fractional derivative in non separable Banach spaces under Filippov type assumptions and we prove the existence of solutions. MSC: 34A60, 26A33, 34B15 keywords: fractional derivative, fractional semilinear differential inclusion, Lusin measurable multifunctions.
In mathematical modeling of the non-squared frequency-dependent diffusions, also known as the anomalous diffusions, it is desirable to have a positive real Fourier transform for the time derivative of arbitrary fractional or odd integer order. The Fourier transform of the fractional time derivative in the Riemann-Liouville and Caputo senses, however, involves a complex power function of the fra...
A new fractional subequation method is proposed for finding exact solutions for fractional partial differential equations (FPDEs). The fractional derivative is defined in the sense ofmodified Riemann-Liouville derivative. As applications, abundant exact solutions including solitary wave solutions as well as periodic wave solutions for the space-time fractional generalized Hirota-Satsuma coupled...
This work is devoted to the study of global solution for initial value problem of interval fractional integrodifferential equations involving Caputo-Fabrizio fractional derivative without singular kernel admitting only the existence of a lower solution or an upper solution. Our method is based on fixed point in partially ordered sets. In this study, we guaranty the existence of special kind of ...
In this article, Ritz approximation have been employed to obtain the numerical solutions of a class of the fractional optimal control problems based on the Caputo fractional derivative. Using polynomial basis functions, we obtain a system of nonlinear algebraic equations. This nonlinear system of equation is solved and the coefficients of basis polynomial are derived. The convergence of the num...
This paper builds on the notion of the so-called orthogonal derivative, where an n-th order derivative is approximated by an integral involving an orthogonal polynomial of degree n. This notion was reviewed in great detail in a paper by the author and Koornwinder in 2012. Here, an approximation of the Weyl or Riemann–Liouville fractional derivative is considered by replacing the n-th derivative...
This paper deals with the application of fourth kind Chebyshev wavelets (FKCW) in solving numerically a model of HIV infection of CD4+T cells involving Caputo fractional derivative. The present problem is a system of nonlinear fractional differential equations. The goal is to approximate the solution in the form of FKCW truncated series. To do this, an operational matrix of fractional integrati...
in this paper, exp-function and (g′/g)expansion methods are presented to derive traveling wave solutions for a class of nonlinear space-time fractional differential equations. as a results, some new exact traveling wave solutions are obtained.
نمودار تعداد نتایج جستجو در هر سال
با کلیک روی نمودار نتایج را به سال انتشار فیلتر کنید