نتایج جستجو برای: policy space

تعداد نتایج: 747131  

Journal: :Strategic Entrepreneurship Journal 2021

Research Summary Anticipating that innovation nurtures entrepreneurship, we began an extended case study of innovative start-up in the space industry. We quickly saw institutions imposed formidable barriers to implementing entrepreneurship from innovation. Curious about how, why and extent this situation, widened our other start-ups, CEOs existing businesses, incubator, a technology transfer of...

2007
Pradeep Varakantham Rajiv T. Maheswaran Tapana Gupta Milind Tambe

While POMDPs (partially observable markov decision problems) are a popular computational model with wide-ranging applications, the computational cost for optimal policy generation is prohibitive. Researchers are investigating ever-more efficient algorithms, yet many applications demand such algorithms bound any loss in policy quality when chasing efficiency. To address this challenge, we presen...

Journal: :CoRR 2015
Jue Wang

Bayesian sequential testing of multiple simple hypotheses is a classical sequential decision problem. But the optimal policy is computationally intractable in general, because the posterior probability space is exponentially increasing in the number of hypotheses (i.e, the curse of dimensionality in state space). We consider a specialized problem in which observations are drawn from the same ex...

پایان نامه :وزارت علوم، تحقیقات و فناوری - دانشگاه ولی عصر (عج) - رفسنجان - دانشکده ریاضی 1392

let h be a separable hilbert space and let b be the set of bessel sequences in h. by using several interesting results in operator theory we study some topological properties of frames and riesz bases by constructing a banach space structure on b. the convergence of a sequence of elements in b is de_ned and we determine whether important properties of the sequence is preserved under the con...

1994
Tommi S. Jaakkola Satinder P. Singh Michael I. Jordan

Increasing attention has been paid to reinforcement learning algo rithms in recent years partly due to successes in the theoretical analysis of their behavior in Markov environments If the Markov assumption is removed however neither generally the algorithms nor the analyses continue to be usable We propose and analyze a new learning algorithm to solve a certain class of non Markov decision pro...

پایان نامه :دانشگاه بین المللی امام خمینی (ره) - قزوین - دانشکده معماری و شهرسازی 1392

تئوری چیدمان فضایی بر پای? گراف ها و قوانین آنان شکل می گیرد. و هر یال گراف در این تئوری برمبنای دید و دسترسی کاربر وزن دهی و تحلیل می شوند. بین هر دو نقطه در فضا که کاربر دید و دسترسی داشته باشد، برداری رسم می شود و این بردار به عنوان یک یال گراف در ارتباط دیگر یال ها تحلیل و بررسی می شود. نکته همین جاست؛ در درج? اول پارامترهای دید و دسترسی برای وزن دهی به یال های گراف کافی نیستند. ا?عمالِ...

2013
Robert V. Lindsey Michael C. Mozer William J. Huggins Harold Pashler

Psychologists are interested in developing instructional policies that boost student learning. An instructional policy specifies the manner and content of instruction. For example, in the domain of concept learning, a policy might specify the nature of exemplars chosen over a training sequence. Traditional psychological studies compare several hand-selected policies, e.g., contrasting a policy ...

2002
Hyeong Soo Chang Steven I. Marcus

We consider an approximation scheme for solving Markov Decision Processes (MDPs) with countable state space, finite action space, and bounded rewards that uses an approximate solution of a fixed finite-horizon sub-MDP of a given infinite-horizon MDP to create a stationary policy, which we call “approximate receding horizon control”. We first analyze the performance of the approximate receding h...

عزیزی, فیروزه,

One of the most important economic factors is potential output. In macroeconomic models and structural studies, the estimation of potential output is necessary for projections and analyzing policy performances. There exist several methods for estimating potential output. Meanwhile, its estimation is a difficult and complicated matter. Empirical studies and researches show that using various te...

2009
ENRIQUE LEMUS-RODRÍGUEZ

It is well-known that in Markov Decision Processes, with a total discounted reward, for instance, it is not always possible to explicitly find the optimal stationary policy f∗. But using the Value Iteration, a stationary policy fN such that the optimal discounted rewards of f∗ and fN are close, for the N -th iteration of the procedure, a question arises: are the actions f∗(x) and fN (x) necessa...

نمودار تعداد نتایج جستجو در هر سال

با کلیک روی نمودار نتایج را به سال انتشار فیلتر کنید