نتایج جستجو برای: petal anthocyanin
تعداد نتایج: 6275 فیلتر نتایج به سال:
Anthocyanin is a major pigment in vegetative and floral organs of most plants and plays an important role in plant evolution. The anthocyanin regulatory genes are responsible for regulating transcription of genes in the anthocyanin synthetic pathway. To assess evolutionary significance of sequence variation and evaluate the phylogenetic utility of an anthocyanin regulatory gene, we compared nuc...
Floral transition and petal onset, as two main aspects of flower development, are crucial to rapeseed evolutionary success and yield formation. Currently, very little is known regarding the genetic architecture that regulates flowering time and petal morphogenesis in Brassica napus. In the present study, a genome-wide transcriptomic analysis was performed with an absolutely apetalous and early ...
Absence of petals, or being apetalous, is usually one of the most important features that characterizes a group of flowering plants at high taxonomic ranks (i.e., family and above). The apetalous condition, however, appears to be the result of parallel or convergent evolution with unknown genetic causes. Here we show that within the buttercup family (Ranunculaceae), apetalous genera in at least...
For self-pollinating plants to reproduce, male and female organ development must be coordinated as flowers mature. The Arabidopsis transcription factors AUXIN RESPONSE FACTOR 6 (ARF6) and ARF8 regulate this complex process by promoting petal expansion, stamen filament elongation, anther dehiscence, and gynoecium maturation, thereby ensuring that pollen released from the anthers is deposited on ...
Flower opening is a process that requires movement of petals from a closed position to a horizontal open position, while petal abscission requires cell-wall disassembly. Both processes are controlled by ethylene and require cell-wall modification at the junction (abscission zone) of the petal and thalamus to facilitate the movement or separation of petals. In the present study, a family of xylo...
Glutathione S-transferase (GST) plays an important role in the transport and accumulation of anthocyanin and proanthocyanidin in plants. In our previous study on Arabidopsis thaliana overexpressing the PRODUCTION OF ANTHOCYANIN PIGMENT 1 (PAP1) gene encoding an MYB transcription factor, the AtGSTF5 and AtGSTF6 genes encoding GST-like protein were up-regulated along with TRANSPARENT TESTA 19 (TT...
Anthocyanin biosynthesis in various plants is affected by environmental conditions and controlled by the transcription level of the corresponding genes. In pears (Pyrus communis cv. 'Wujiuxiang'), anthocyanin biosynthesis is significantly induced during low temperature storage compared with that at room temperature. We further examined the transcriptional levels of anthocyanin biosynthetic gene...
Contributions of photosynthesis and phytochrome to the formation of anthocyanin in turnip seedlings.
Turnip seedlings (Brassica rapa L.) irradiated for 24 hours with radiation at 720 nanometers synthesize chlorophyll a and anthocyanin. Antimycin A and 2,4-dinitrophenol, which are known to reduce cyclic photophosphorylation, also reduce anthocyanin synthesis. Noncyclic photophosphorylation is inhibited by 3-(3,4-dichlorophenyl)-1,1-dimethylurea and o-phenanthroline. These compounds promote cycl...
The epidermis of swollen storage roots in purple cultivars of turnip "Tsuda" (Brassica rapa) accumulates anthocyanin in a light-dependent manner, especially in response to UV-A light, of which the mechanism is unclear. In this study, we mutagenized 15,000 seeds by 0.5% (v/v) ethyl methane sulfonate (EMS) and obtained 14 mutants with abnormal anthocyanin production in their epidermis of swollen ...
نمودار تعداد نتایج جستجو در هر سال
با کلیک روی نمودار نتایج را به سال انتشار فیلتر کنید