نتایج جستجو برای: p adic dual tight frame
تعداد نتایج: 1538572 فیلتر نتایج به سال:
We show that translations and dilations of a p–adic wavelet coincides (up to the multiplication by some root of one) with a vector from the known basis of discrete p–adic wavelets. In this sense the continuous p–adic wavelet transform coincides with the discrete p–adic wavelet transform. The p–adic multiresolution approximation is introduced and relation with the real multiresolution approximat...
In this paper we introduce and study Besselian $g$-frames. We show that the kernel of associated synthesis operator for a Besselian $g$-frame is finite dimensional. We also introduce $alpha$-dual of a $g$-frame and we get some results when we use the Hilbert-Schmidt norm for the members of a $g$-frame in a finite dimensional Hilbert space.
The theory of c-frames and c-Bessel mappings are the generalizationsof the theory of frames and Bessel sequences. In this paper, weobtain several equivalent conditions for dual of c-Bessel mappings.We show that for a c-Bessel mapping $f$, a retrievalformula with respect to a c-Bessel mapping $g$ is satisfied if andonly if $g$ is sum of the canonical dual of $f$ with a c-Besselmapping which wea...
In this paper, first we develop the duality concept for $g$-Bessel sequences and Bessel fusion sequences in Hilbert spaces. We obtain some results about dual, pseudo-dual and approximate dual of frames and fusion frames. We also expand every $g$-Bessel sequence to a frame by summing some elements. We define the restricted isometry property for $g$-frames and generalize some resu...
In this paper, we introduce the p-adic Hardy type operator and obtain its sharp bound on the p-adic Lebesgue product spaces. Meanwhile, an analogous result is computed for the p-adic Lebesgue product spaces with power weights. In addition, we characterize a sufficient and necessary condition which ensures that the weighted p-adic Hardy type operator is bounded on the p-adic Lebesgue product spa...
The Dezert-Smarandache theory of plausible and paradoxical reasoning is based on the premise that some elements θi of a frame Θ have a non-empty intersection. These elements are called exhaustive. In number theory, this property is observed only in non-Archimedean number systems, for example, in the ring Zp of p-adic integers, in the field Q of hyperrational numbers, in the field R of hyperreal...
G-frames are natural generalizations of frames which provide more choices on analyzing functions from frame expansion coefficients. First, they were defined in Hilbert spaces and then generalized on C*-Hilbert modules. In this paper, we first generalize the concept of g-frames to Hilbert modules over pro-C*-algebras. Then, we introduce the g-frame operators in such spaces and show that they sha...
نمودار تعداد نتایج جستجو در هر سال
با کلیک روی نمودار نتایج را به سال انتشار فیلتر کنید