نتایج جستجو برای: motif discovery
تعداد نتایج: 176765 فیلتر نتایج به سال:
Biological sequences may contain patterns that are signal important biomolecular functions; a classical example is regulation of gene expression by transcription factors that bind to specific patterns in genomic promoter regions. In motif discovery we are given a set of sequences that share a common motif and aim to identify not only the motif composition, but also the binding sites in each seq...
MOTIVATION Identification of single motifs and motif pairs that can be used to predict transcription factor localization in ChIP-chip data, and gene expression in tissue-specific microarray data. RESULTS We describe methodology to identify de novo individual and interacting pairs of binding site motifs from ChIP-chip data, using an algorithm that integrates localization data directly into the...
The problem of locating motifs in multivariate, real-valued time series data concerns the discovery of sets of recurring patterns embedded in the time series. Each set is composed of several nonoverlapping subsequences and constitutes a motif because all of the subsequences are similar. This task is a natural extension of univariate motif discovery in both the symbolic and real-valued domains a...
Motif discovery is an important problem in protein sequence analysis. Computationally, it can be viewed as an application of the more general multiple local alignment problem, which often encounters the difficulty of computer time when aligning many sequences. We introduce a new algorithm for multiple local alignment for protein sequences, based on the de Bruijn graph approach first proposed by...
One of the most important pattern recognition problems in bioinformatics is the de novo motif discovery. In particular, there is a large room of improvement in motif discovery from eukaryotic genome, where the sequences have complicated background noise. The short segment frequency equalization (SSFE) is a novel treatment method to incorporate Markov background models into de novo motif discove...
Identifying conserved patterns in DNA sequences, namely, motif discovery, is an important and challenging computational task. With hundreds or more sequences contained, the high-throughput sequencing data set is helpful to improve the identification accuracy of motif discovery but requires an even higher computing performance. To efficiently identify motifs in large DNA data sets, a new algorit...
We present a threefold contribution to the computational task of motif discovery, a key component in the effort of delineating the regulatory map of a genome: (1) We constructed a comprehensive large-scale, publicly-available compendium of transcription factor and microRNA target gene sets derived from diverse high-throughput experiments in several metazoans. We used the compendium as a benchma...
High-throughput protein-RNA interaction data generated by CLIP-seq has provided an unprecedented depth of access to the activities of RNA-binding proteins (RBPs), the key players in co- and post-transcriptional regulation of gene expression. Motif discovery forms part of the necessary follow-up data analysis for CLIP-seq, both to refine the exact locations of RBP binding sites, and to character...
MOTIVATION Identifying regulatory elements is a fundamental problem in the field of gene transcription. Motif discovery-the task of identifying the sequence preference of transcription factor proteins, which bind to these elements-is an important step in this challenge. MEME is a popular motif discovery algorithm. Unfortunately, MEME's running time scales poorly with the size of the dataset. Ex...
نمودار تعداد نتایج جستجو در هر سال
با کلیک روی نمودار نتایج را به سال انتشار فیلتر کنید