نتایج جستجو برای: mixture probability model

تعداد نتایج: 2320040  

Journal: :iranian journal of radiation research 0
t.s. kehwar department of radiation oncology, university of pittsburgh cancer institute, pittsburgh, pa, usa s.f. akber department of radiation oncology, case western reserve university, cleveland, ohio, usa a.k. bhardwaj department of radiation oncology, postgraduate institute of medical education and research, chandigarh, india v.k. dangwal department of radiotherapy, govt. medical college, patiala, india

background: study in design to incorporate accelerated proliferation correction factors into linearquadratic and multiple-component models. materials and methods: accelerated proliferation rate correction factor has been incorporated into the linearquadratic and the multiple component models by applying accelerated exponential cell growth to explain the tumor cell kinetics and estimates proper ...

Journal: :Computational Statistics & Data Analysis 2012
Raydonal Ospina Silvia L. P. Ferrari

This paper proposes a general class of regression models for continuous proportions when the data contain zeros or ones. The proposed class of models assumes that the response variable has a mixed continuous-discrete distribution with probability mass at zero or one. The beta distribution is used to describe the continuous component of the model, since its density has a wide range of different ...

2006
Daniel Doktor Thomas Carruthers Murdoch McAllister Tim Oxley

Contents 1 Introduction 2 The R program 3 Phenology, an introduction 4 Geo-statistical modelling & analysis of phenological phases 5 Multivariate tools to visualise spatio-temporal patterns in phenology 6 Gaussian Mixture Models of geographical phenomena 7 Analysis of space-time correlations within geographical studies

2009
Juan Eugenio Iglesias Paul Thompson Zhuowen Tu

High angular resolution diffusion imaging is an increasingly important image modality. The nature of the diffusion data makes mixtures of probability distributions particularly suitable for modeling its signals. In this paper, we introduce Bayesian finite mixture models for studying the diffusion field. We apply a spatially variant mixture model to study prior distributions on the model paramet...

2008
Anastasios Alivanoglou Aristidis Likas

Mixture models constitute a popular type of probabilistic neural networks which model the density of a dataset using a convex combination of statistical distributions, with the Gaussian distribution being the one most commonly used. In this work we propose a new probability density function, called the Π-sigmoid, from its ability to form the shape of the letter “Π” by appropriately combining tw...

1998
Te-Won Lee Michael S. Lewicki Terrence J. Sejnowski

We present an unsupervised classification algorithm based on an ICA mixture model. The ICA mixture model assumes that the observed data can be categorized into several mutually exclusive data classes in which the components in each class are generated by a linear mixture of independent sources. The algorithm finds the independent sources, the mixing matrix for each class and also computes the c...

2003
Andreas Lindemann Christian L. Dunis Paulo Lisboa

The purpose of this paper is twofold. Firstly, to assess the merit of estimating probability density functions rather than level or classification estimations on a oneday-ahead forecasting task of the EUR/USD time series. This is implemented using a Gaussian mixture model neural network, benchmarking the results against standard forecasting models, namely a naïve model, a moving average converg...

1999
Hynek Hermansky Dan Ellis Sangita Sharma

Hidden Markov model speech recognition systems typically use Gaussian mixture models to estimate the distributions of decorrelated acoustic feature vectors that correspond to individual subword units. By contrast, hybrid connectionist-HMM systems use discriminatively-trained neural networks to estimate the probability distribution among subword units given the acoustic observations. In this wor...

2000
Hynek Hermansky Daniel P. W. Ellis Sangita Sharma

Hidden Markov model speech recognition systems typically use Gaussian mixture models to estimate the distributions of decorrelated acoustic feature vectors that correspond to individual subword units. By contrast, hybrid connectionist-HMM systems use discriminatively-trained neural networks to estimate the probability distribution among subword units given the acoustic observations. In this wor...

2016
James A. Grange

In task switching, increasing the response-cue interval has been shown to reduce the switch cost. This has been attributed to a time-based decay process influencing the activation of memory representations of tasks (task-sets). Recently, an alternative account based on interference rather than decay has been successfully applied to this data (Horoufchin et al., 2011a). In this account, variatio...

نمودار تعداد نتایج جستجو در هر سال

با کلیک روی نمودار نتایج را به سال انتشار فیلتر کنید

function paginate(evt) { url=/search_year_filter/ var term=document.getElementById("search_meta_data").dataset.term pg=parseInt(evt.target.text) var data={ "year":filter_year, "term":term, "pgn":pg } filtered_res=post_and_fetch(data,url) window.scrollTo(0,0); } function update_search_meta(search_meta) { meta_place=document.getElementById("search_meta_data") term=search_meta.term active_pgn=search_meta.pgn num_res=search_meta.num_res num_pages=search_meta.num_pages year=search_meta.year meta_place.dataset.term=term meta_place.dataset.page=active_pgn meta_place.dataset.num_res=num_res meta_place.dataset.num_pages=num_pages meta_place.dataset.year=year document.getElementById("num_result_place").innerHTML=num_res if (year !== "unfilter"){ document.getElementById("year_filter_label").style="display:inline;" document.getElementById("year_filter_place").innerHTML=year }else { document.getElementById("year_filter_label").style="display:none;" document.getElementById("year_filter_place").innerHTML="" } } function update_pagination() { search_meta_place=document.getElementById('search_meta_data') num_pages=search_meta_place.dataset.num_pages; active_pgn=parseInt(search_meta_place.dataset.page); document.getElementById("pgn-ul").innerHTML=""; pgn_html=""; for (i = 1; i <= num_pages; i++){ if (i===active_pgn){ actv="active" }else {actv=""} pgn_li="
  • " +i+ "
  • "; pgn_html+=pgn_li; } document.getElementById("pgn-ul").innerHTML=pgn_html var pgn_links = document.querySelectorAll('.mypgn'); pgn_links.forEach(function(pgn_link) { pgn_link.addEventListener('click', paginate) }) } function post_and_fetch(data,url) { showLoading() xhr = new XMLHttpRequest(); xhr.open('POST', url, true); xhr.setRequestHeader('Content-Type', 'application/json; charset=UTF-8'); xhr.onreadystatechange = function() { if (xhr.readyState === 4 && xhr.status === 200) { var resp = xhr.responseText; resp_json=JSON.parse(resp) resp_place = document.getElementById("search_result_div") resp_place.innerHTML = resp_json['results'] search_meta = resp_json['meta'] update_search_meta(search_meta) update_pagination() hideLoading() } }; xhr.send(JSON.stringify(data)); } function unfilter() { url=/search_year_filter/ var term=document.getElementById("search_meta_data").dataset.term var data={ "year":"unfilter", "term":term, "pgn":1 } filtered_res=post_and_fetch(data,url) } function deactivate_all_bars(){ var yrchart = document.querySelectorAll('.ct-bar'); yrchart.forEach(function(bar) { bar.dataset.active = false bar.style = "stroke:#71a3c5;" }) } year_chart.on("created", function() { var yrchart = document.querySelectorAll('.ct-bar'); yrchart.forEach(function(check) { check.addEventListener('click', checkIndex); }) }); function checkIndex(event) { var yrchart = document.querySelectorAll('.ct-bar'); var year_bar = event.target if (year_bar.dataset.active == "true") { unfilter_res = unfilter() year_bar.dataset.active = false year_bar.style = "stroke:#1d2b3699;" } else { deactivate_all_bars() year_bar.dataset.active = true year_bar.style = "stroke:#e56f6f;" filter_year = chart_data['labels'][Array.from(yrchart).indexOf(year_bar)] url=/search_year_filter/ var term=document.getElementById("search_meta_data").dataset.term var data={ "year":filter_year, "term":term, "pgn":1 } filtered_res=post_and_fetch(data,url) } } function showLoading() { document.getElementById("loading").style.display = "block"; setTimeout(hideLoading, 10000); // 10 seconds } function hideLoading() { document.getElementById("loading").style.display = "none"; } -->