نتایج جستجو برای: markov chain monte carlo mcmc
تعداد نتایج: 397826 فیلتر نتایج به سال:
Parallel predictive prefetching is a new framework for accelerating a large class of widelyused Markov chain Monte Carlo (MCMC) algorithms. It speculatively evaluates many potential steps of an MCMC chain in parallel while exploiting fast, iterative approximations to the target density. This can accelerate sampling from target distributions in Bayesian inference problems. Our approach takes adv...
From Monte Carlo to Las Vegas: Improving Restricted Boltzmann Machine Training Through Stopping Sets
We propose a Las Vegas transformation of Markov Chain Monte Carlo (MCMC) estimators of Restricted Boltzmann Machines (RBMs). We denote our approach Markov Chain Las Vegas (MCLV). MCLV gives statistical guarantees in exchange for random running times. MCLV uses a stopping set built from the training data and has maximum number of Markov chain steps K (referred as MCLV-K). We present a MCLV-K gra...
We describe the importance and widespread use of Markov chain Monte Carlo (MCMC) algorithms, with an emphasis on the roles in which theoretical analysis can help with their practical implementation. In particular, we discuss how to achieve rigorous quantitative bounds on convergence to stationarity using the coupling method together with drift and minorisation conditions. We also discuss recent...
We propose a new class of interacting Markov chain Monte Carlo (MCMC) algorithms designed for increasing the efficiency of a modified multiple-try Metropolis (MTM) algorithm. The extension with respect to the existing MCMC literature is twofold. The sampler proposed extends the basic MTM algorithm by allowing different proposal distributions in the multiple-try generation step. We exploit the s...
The Weibull distribution has been widely used in survival and engineering reliability analysis. In life testing experiments is fairly common practice to terminate the experiment before all the items have failed, that means the data are censored. Thus, the main objective of this paper is to estimate the reliability function of the Weibull distribution with uncensored and censored data by using B...
Richardson and Green (1997) present a method of performing a Bayesian analysis of data from a finite mixture distribution with an unknown number of components. Their method is a Markov Chain Monte Carlo (MCMC) approach, which makes use of the “reversible jump” methodology described by Green (1995). We describe an alternative MCMC method which views the parameters of the model as a (marked) poin...
Bayesian analysis for Markov jump processes (MJPs) is a non-trivial and challenging problem. Although exact inference is theoretically possible, it is computationally demanding, thus its applicability is limited to a small class of problems. In this paper, we describe the application of Riemann manifold Markov chain Monte Carlo (MCMC) methods using an approximation to the likelihood of the MJP ...
The performance of Markov chain Monte Carlo methods is often sensitive to the scaling and correlations between the random variables of interest. An important source of information about the local correlation and scale is given by the Hessian matrix of the target distribution, but this is often either computationally expensive or infeasible. In this paper we propose MCMC samplers that make use o...
This chapter reviews the recent developments in Markov chain Monte Carlo simulation methods These methods, which are concerned with the simulation of high dimensional probability distributions, have gained enormous prominence and revolutionized Bayesian statistics The chapter provides background on the relevant Markov chain theory and provides detailed information on the theory and practice of ...
نمودار تعداد نتایج جستجو در هر سال
با کلیک روی نمودار نتایج را به سال انتشار فیلتر کنید