نتایج جستجو برای: loop مدل شبکه عصبی ژنوتیپ

تعداد نتایج: 284553  

یکی از جنبه‌های حائز اهمیت در مدیریت محیط در ژئومورفولوژی کاربردی حل مشکل برآورد رسوب یک سیستم رودخانه‌ای می‏باشد. هدف این مطالعه ارزیابی عملکرد مقایسه‌ای دونوع شبکه عصبی مصنوعی (مدل ژئومورفولوژیکی و مدل غیر ژئومورفولوژیکی) و دو نوع مدل رگرسیونی (مدل توانی ومدل غیر خطی چندگانه) برای پیش بینی بار رسوب معلق حوضه اسکندری در حوضه آبریز زاینده رود می‏باشد. مدل‏ها براساس آمار 104 حادثه وقوع همزمان ثب...

ژورنال: :دانش آب و خاک 0
علی محمد خورشیددوست استاد گروه آب و هواشناسی، دانشکده جغرافیا و برنامه ریزی، دانشگاه تبریز سعید جهانبخش اصل استاد گروه آب و هواشناسی، دانشکده جغرافیا و برنامه ریزی، دانشگاه تبریز حامد عباسی 3- استادیار گروه جغرافیا، دانشکده ادبیات و علوم انسانی، دانشگاه لرستان سعید فرزین -استادیار گروه مهندسی آب و سازه های هیدرولیکی، دانشکده مهندسی عمران، دانشگاه سمنان حمید میرهاشمی دانشجوی دکتری آب و هواشناسی، دانشکده جغرافیا و برنامه ریزی، دانشگاه تبریز

تبخیر پتانسیل از جمله مؤلفه های چرخه آب در طبیعت است که پیش بینی آن یک کار پیچیده و غیرخطی است. بنابراین، برای تخمین آن بایستی از مدل های پیشرفته ریاضی استفاده نمود. مطالعه حاضر، با هدف ارائه مدل پیش بینی سری زمانی پتانسیل تبخیر روزانه ایستگاه تبریز با استفاده از دو رویکرد شبکه عصبی و شبکه عصبی ـ موجکی همراه با نویززدایی داده ها انجام گرفت. سری زمانی روزانه مقدار تبخیر تشتک تبخیرسنج ایستگاه تبر...

‌در پژوهش حاضر، حافظه بلندمدت و رفتار دینامیکی سیگنال سری زمانی جریان روزانه رودخانه خرم‌آباد که حوزه آبخیز آن کوهستانی و دارای کاربری شهری است، با استفاده از نمایه هرست بررسی شده است. مقدار نمایه هرست سیگنال رواناب رودخانه خرم‌آباد در بازه زمانی سال‌های 1370 تا 1393 برابر با 0.8 به‌دست آمد. این مقدار نشان از حافظه بلندمدت و دینامیک غیر خطی سیگنال رواناب این رودخانه دارد. در ادامه، با به‌کارگیر...

بهاره محمدی, محمد احسانی‌فر نیما همتا,

این مقاله با هدف شناسایی عوامل مؤثر بر ریسک اعتباری و ارائه مدلی جهت پیش­بینی ریسک اعتباری و رتبه­بندی اعتباری مشتریان حقوقی متقاضی تسهیلات بانک سپه شهرستان دزفول، با استفاده از روش­های خوشه­بندی، شبکه عصبی و ماشین بردار پشتیبان انجام گرفته است. در این مقاله، 27 متغیر توضیح­دهنده شامل متغیرهای مالی و غیرمالی مورد بررسی قرار گرفت که از بین این متغیرها، 8 متغیر تأثیرگذار بر ریسک اعتباری انتخاب گر...

ژورنال: فیزیک زمین و فضا 2008
ابوالفضل اژدرپور خسرو اشرفی روح‌الله نوری

هدف از این مقاله، پیش‌بینی میانگین غلظت روزانه کربن‌مونوکسید در هوای شهر تهران با استفاده از دو مدل شبکه عصبی مصنوعی و رگرسیون خطی چندمتغیره برحسب تحلیل مؤلفه اصلی (PCA) است. از روش PCA برای از بین بردن هم‌راستایی چندگانه (multicolinearity) بین متغیرهای ورودی و تفسیر بهتر نتایج مدل رگرسیونی استفاده شده است. همچنین با استفاده از شبکه عصبی Feed-Forward با یک لایه پنهان نیز مدل مناسب برای این امر...

 پیش‌بینی فراورده‌های (هیدروژن و کربن مونوکسید) تبدیل خشک متان به‌کمک پلاسما در فشار جوی با استفاده از شبکه عصبی مصنوعی شبیه‌سازی شد. داده‌های تجربی موردنیاز برای مدل‌سازی شبکه عصبی مصنوعی از یک واکنشگاه پلاسمایی تخلیه کرونا جمع‌آوری شد. اثر عامل‌های فرایندی (توان تخلیه پلاسما، دبی خوراک ورودی) بر کارایی تبدیل متان و گزینش‌پذیری نسبت به فراورده‌های مورد بررسی قرار گرفتند. شبکه پیش‌خور با الگوری...

ژورنال: :روش های هوشمند در صنعت برق 2012
لیلا خلیل زاده گنجعلی خانی فرید شیخ الاسلام همایون مهدوی نسب

یکی از مؤثرترین راهکارها برای افزایش راندمان نیروگاه، بهبود سیستم کنترل آن است. برای چنین بهبودی داشتن مدل دقیقی از مولد بخار نیروگاه ضروری است. در این مقاله، یک مولد بخار صنعتی به عنوان یک سیستم غیرخطی چندمتغیره برای شناسایی در نظر گرفته می­شود. یک گام مهم در شناسایی غیرخطی سیستم، گسترش دادن یک مدل غیرخطی است. در سال های اخیر، شبکه­های عصبی مصنوعی به طور موفقیت آمیزی در شناسایی سیستم­های غیرخط...

امروزه با پیشرفت تکنولوژی برای حل مسائلی که روابط دقیق ریاضی بین ورودی و خروجی برقرار نمی باشد از شبکه های عصبی مصنوعی استفاده می شود. در این پژوهش برای پیش‎بینی کشش سطحی مایعات یونی بر پایه ایمیدازولیوم دو شبکه عصبی پرسپترون چند لایه شامل شبکه عصبی مصنوعی پیشرو (FFANN) و شبکه عصبی آبشاری (CANN) پیشنهاد شد. برای بررسی صحت مدل ها، از 1251 داده آزمایشگاهی گردآوری شده از مقالات مختلف شامل کشش سطحی...

ژورنال: :تحقیقات منابع آب ایران 0
ناصر رستم افشار استادیار /دانشگاه صنعت آب و برق (شهید عباس پور) هدایت فهمی شرکت مدیریت منابع آب ایران علیرضا پیره کارشناس /گروه پژوهشی جاماب

مقاله حاضر به بررسی نحوه عملکرد شبکه های عصبی mlp در ارتباط با خروجی مدل فوریه، fsam، می پردازد. مدل fsam که مدل شبیه ساز بارش است، تحلیل مدل های کلاسیک را در قلمرو فرکانس، که توسعه نظریه طیفی فرآیندهای متداول نظیر طیف الگوهای arima را در درون خود دارد، ارائه می دهد. کاربرد همزمان شبکه های عصبی mlp و مدلfsam، امکان پیش بینی جریان ماه (i) ام را در ارتباط با پیش بینی بارش همان ماه، میسر می سازد. ...

ژورنال: :فصلنامه علمی- پژوهشی آب و فاضلاب 2011
محمدجواد ذوقی محسن سعیدی

در این مطالعه به منظور مدل سازی شدت جریان فاضلاب در مراکز دفن زباله از شبکه عصبی مصنوعی استفاده شد. پس از آموزش، شبکه عصبی قادر است براساس داده های هواشناسی و مشخصات فاضلاب مرکز دفن، شدت جریان فاضلاب را پیش بینی کند. داده های ورودی شبکه عصبی شامل پارامترهایی نظیر ph، دما، هدایت الکتریکی فاضلاب مرکز دفن و داده های هواشناسی بود. برای ارزیابی و تشریح مدل، مرکز دفن زباله بیروت به صورت موردی بررسی ش...

نمودار تعداد نتایج جستجو در هر سال

با کلیک روی نمودار نتایج را به سال انتشار فیلتر کنید