نتایج جستجو برای: latent class clustering
تعداد نتایج: 545339 فیلتر نتایج به سال:
Most learning approaches treat dimensionality reduction (DR) and clustering separately (i.e., sequentially), but recent research has shown that optimizing the two tasks jointly can substantially improve the performance of both. The premise behind the latter genre is that the data samples are obtained via linear transformation of latent representations that are easy to cluster; but in practice, ...
Text clustering and classification are two main tasks of text mining. Feature selection plays the key role in the quality of the clustering and classification results. Although word-based features such as term frequency-inverse document frequency (TF-IDF) vectors have been widely used in different applications, their shortcoming in capturing semantic concepts of text motivated researches to use...
Abstract Latent class analysis (LCA) for categorical data is a model-based clustering and classification technique applied in a wide range of fields including the social sciences, machine learning, psychiatry, public health, and epidemiology. Its central assumption is conditional independence of the indicators given the latent class, i.e. “local independence”; violations can appear as model mis...
The paper presents an iterative bidirectional clustering of adjectives and nouns based on a cooccurrence matrix. The clustering method combines a Vector Space Models (VSM) and the results of a Latent Dirichlet Allocation (LDA), whose results are merged in each iterative step. The aim is to derive a clustering of German adjectives that reflects latent semantic classes of adjectives, and that can...
Different document representation models have been proposed to measure semantic similarity between documents using corpus statistics. Some of these models explicitly estimate semantic similarity based on measures of correlations between terms, while others apply dimension reduction techniques to obtain latent representation of concepts. This paper proposes new hybrid models that combine explici...
poLCA is a software package for the estimation of latent class and latent class regression models for polytomous outcome variables, implemented in the R statistical computing environment. Both models can be called using a single simple command line. The basic latent class model is a finite mixture model in which the component distributions are assumed to be multi-way cross-classification tables...
Nonnegative matrix factorization NMF is a popular tool for analyzing the latent structure of nonnegative data. For a positive pairwise similarity matrix, symmetric NMF SNMF and weighted NMF WNMF can be used to cluster the data. However, both of them are not very efficient for the ill-structured pairwise similarity matrix. In this paper, a novel model, called relationship matrix nonnegative deco...
We present a novel method for hierarchical topic detection where topics are obtained by clustering documents in multiple ways. Specifically, we model document collections using a class of graphical models called hierarchical latent tree models (HLTMs). The variables at the bottom level of an HLTM are observed binary variables that represent the presence/absence of words in a document. The varia...
An overview is provided of recent developments in the use of latent class (LC) and other types of %nite mixture models for classi%cation purposes. Several extensions of existing models are presented. Two basic types of LC models for classi%cation are de%ned: supervised and unsupervised structures. Their most important special cases are presented and illustrated with an empirical example. c © 20...
In latent class analysis (LCA) one seeks a clustering of categorical data, such as patterns of symptoms of a patient, in terms of locally independent stochastic models. This leads to practical definitions of criteria, e.g., whether to include patients in further diagnostic examinations. The clustering is often determined by parameters that are estimated by the maximum likelihood method. The lik...
نمودار تعداد نتایج جستجو در هر سال
با کلیک روی نمودار نتایج را به سال انتشار فیلتر کنید