نتایج جستجو برای: k tuple total domination number

تعداد نتایج: 2138135  

Journal: :Discrete Applied Mathematics 2002
Sylvain Gravier

We use the link between the existence of tilings in Manhattan metric with {1}-bowls and minimum total dominating sets of Cartesian products of paths and cycles. From the existence of such a tiling, we deduce the asymptotical values of the total domination numbers of these graphs and we deduce the total domination numbers of some Cartesian products of cycles. Finally, we investigate the problem ...

2013
You Lu

Let denote the Cartesian product of graphs and A total dominating set of with no isolated vertex is a set of vertices of such that every vertex is adjacent to a vertex in The total domination number of is the minimum cardinality of a total dominating set. In this paper, we give a new lower bound of total domination number of using parameters total domination, packing and -domination numbers of ...

Journal: :Ars Comb. 2009
Teresa W. Haynes Michael A. Henning

A total dominating set of a graph G with no isolated vertex is a set S of vertices of G such that every vertex is adjacent to a vertex in S. The total domination number of G is the minimum cardinality of a total dominating set in G. In this paper, we present several upper bounds on the total domination number in terms of the minimum degree, diameter, girth and order.

Let $kgeq 1$ be an integer, and $G=(V,E)$ be a finite and simplegraph. The closed neighborhood $N_G[e]$ of an edge $e$ in a graph$G$ is the set consisting of $e$ and all edges having a commonend-vertex with $e$. A signed Roman edge $k$-dominating function(SREkDF) on a graph $G$ is a function $f:E rightarrow{-1,1,2}$ satisfying the conditions that (i) for every edge $e$of $G$, $sum _{xin N[e]} f...

Journal: :Discrete Mathematics 2006
Liying Kang Erfang Shan Lou Caccetta

A function f defined on the vertices of a graph G = (V ,E), f : V → {−1, 0, 1} is a total minus dominating function (TMDF) if the sum of its values over any open neighborhood is at least one. The weight of a TMDF is the sum of its function values over all vertices. The total minus domination number, denoted by −t (G), of G is the minimum weight of a TMDF on G. In this paper, a sharp lower bound...

Journal: :Discrete Mathematics & Theoretical Computer Science 2011
Michael A. Henning Ernst J. Joubert Justin Southey

A Nordhaus-Gaddum-type result is a (tight) lower or upper bound on the sum or product of a parameter of a graph and its complement. In this paper we study Nordhaus-Gaddum-type results for total domination. We examine the sum and product of γt(G1) and γt(G2) where G1 ⊕G2 = K(s, s), and γt is the total domination number. We show that the maximum value of the sum of the total domination numbers of...

Journal: :Discrete Mathematics 1996
Michael A. Henning Ortrud R. Oellermann Henda C. Swart

For any graph G and a set ~ of graphs, two distinct vertices of G are said to be ~-adjacent if they are contained in a subgraph of G which is isomorphic to a member of ~. A set S of vertices of G is an ~-dominating set (total ~¢~-dominating set) of G if every vertex in V(G)-S (V(G), respectively) is 9¢g-adjacent to a vertex in S. An ~-dominating set of G in which no two vertices are oCf-adjacen...

Journal: :bulletin of the iranian mathematical society 2014
m. n. iradmusa

for any $k in mathbb{n}$, the $k$-subdivision of graph $g$ is a simple graph $g^{frac{1}{k}}$, which is constructed by replacing each edge of $g$ with a path of length $k$. in [moharram n. iradmusa, on colorings of graph fractional powers, discrete math., (310) 2010, no. 10-11, 1551-1556] the $m$th power of the $n$-subdivision of $g$ has been introduced as a fractional power of $g$, denoted by ...

2010
A. Hansberg

For a graph G a subset D of the vertex set of G is a k-dominating set if every vertex not in D has at least k neighbors in D. The k-domination number γk(G) is the minimum cardinality among the k-dominating sets of G. Note that the 1-domination number γ1(G) is the usual domination number γ(G). Fink and Jacobson showed in 1985 that the inequality γk(G) ≥ γ(G) + k − 2 is valid for every connected ...

نمودار تعداد نتایج جستجو در هر سال

با کلیک روی نمودار نتایج را به سال انتشار فیلتر کنید