نتایج جستجو برای: k nearest neighbour
تعداد نتایج: 400172 فیلتر نتایج به سال:
Being non-invasive and effective at a distance, recognition suffers from low resolution sequence case. In this paper, we attempt to address the issue through the proposed high frequency super resolution method. First, a group of high resolution training gait images are degenerated for capturing high-frequency information loss. Then the combination of neighbor embedding with interpolation method...
Shadows in high resolution imagery create significant problems for urban land cover classification and environmental application. We first investigated whether shadows were intrinsically different and hypothetically possible to separate from each other with ground spectral measurements. Both pixel-based and object-oriented methods were used to evaluate the effects of shadow detection on QuickBi...
Abstract. This paper presents methods that support automatically finding abstract indexing concepts in textual cases and demonstrates how these cases can be used in an interpretive CBR system to carry out case-based argumentation and prediction from text cases. We implemented and evaluated these methods in SMILE+IBP, which predicts the outcome of legal cases given a textual summary. Our approac...
The nearest neighbor classification/regression technique, besides its simplicity, is one of the most widely applied and well studied techniques for pattern recognition in machine learning. A nearest neighbor classifier assumes class conditional probabilities to be locally smooth. This assumption is often invalid in high dimensions and significant bias can be introduced when using the nearest ne...
word spotting is a technique which can extract the text from input image. Here, we implemented on scanned Tamil land documents. Using Gabor feature, we extract the feature values for the input image. The main goal is recognize the text from the document using K nearest neighbor classifier. The features were calculated and the features were combined. Using these features, we can classify and rec...
In this paper, we present two novel class-based weighting methods for the Euclidean nearest neighbor algorithm and compare them with global weighting methods considering empirical results on a widely accepted time series classification benchmark dataset. Our methods provide higher accuracy than every global weighting in nearly half of the cases and they have better overall performance. We concl...
Many pattern recognition tasks make use of the k nearest neighbour (k–NN) technique. In this paper we are interested on fast k– NN search algorithms that can work in any metric space i.e. they are not restricted to Euclidean–like distance functions. Only symmetric and triangle inequality properties are required for the distance. A large set of such fast k–NN search algorithms have been develope...
Although publicly accessible databases containing speech documents. It requires a great deal of time and effort required to keep them up to date is often burdensome. In an effort to help identify speaker of speech if text is available, text-mining tools, from the machine learning discipline, it can be applied to help in this process also. Here, we describe and evaluate document classification a...
1 I n t r o d u c t i o n This paper investigates the problem of realizing a given graph G as a "nearest neighbour graph" of a set P of points in the plane. Roughly speaking, a "nearest neighbour graph" is a geometric graph formed from a set of points in the plane by joining two points if one is the nearest neighbour of the other. Fig. 1. A mutual nearest neighbour graph One specific kind of ne...
نمودار تعداد نتایج جستجو در هر سال
با کلیک روی نمودار نتایج را به سال انتشار فیلتر کنید