نتایج جستجو برای: hybrid wavelet model neural network

تعداد نتایج: 2895647  

Journal: :amirkabir international journal of modeling, identification, simulation & control 2014
a. fakharian r. mosaferin m. b. menhaj

in this paper, a recurrent fuzzy-neural network (rfnn) controller with neural network identifier in direct control model is designed to control the speed and exhaust temperature of the gas turbine in a combined cycle power plant. since the turbine operation in combined cycle unit is considered, speed and exhaust temperature of the gas turbine should be simultaneously controlled by fuel command ...

2007
Qian Zhang

This paper proposes a new method for load forecasting—the wavelet neural network model for daily load forecasting. The neural call function is basis of nonlinear wavelets. A wavelet network is composed by the wavelet basis function. The global optimum solution is got. We overcome the intrinsic defects of a artificial neural network that its learning speed is slow, its network structure is diffi...

Journal: :iranian journal of chemistry and chemical engineering (ijcce) 2010
najeh alali mahmoud reza pishvaie vahid taghikhani

production of highly viscous tar sand bitumen using steam assisted gravity drainage (sagd) with a pair of horizontal wells has advantages over conventional steam flooding. this paper explores the use of artificial neural networks (anns) as an alternative to the traditional sagd simulation approach. feed forward, multi-layered neural network meta-models are trained through the back-error-propaga...

In this study, a hybrid intelligent model has been designed to predict groundwater inflow to a mine pit during its advance. Novel hybrid method coupling artificial neural network (ANN) with genetic algorithm (GA) called ANN-GA, was utilised. Ratios of pit depth to aquifer thickness, pit bottom radius to its top radius, inverse of pit advance time and the hydraulic head (HH) in the observation w...

Journal: Iranian Economic Review 2006

Estimation (Forecasting) of industrial production costs is one of the most important factor affecting decisions in the highly competitive markets. Thus, accuracy of the estimation is highly desirable. Hibrid Regression Neural Network is an approach proposed in this paper to obtain better fitness in comparison with Regression Analysis and the Neural Network methods. Comparing the estimated resul...

2011
Khalooq Y. Al Azzawi Khaled Daqrouq

A novel vowel feature extraction method via hybrid wavelet and linear prediction coding (LPC) is presented here. The proposed Arabic vowels recognition system is composed of very promising techniques; wavelet transform (WT) with linear prediction coding (LPC) for feature extraction and feed forward backpropagation neural network (FFBPNN) for classification. Trying to enhance the recognition pro...

Electricity demand forecasting is one of the most important factors in the planning, design, and operation of competitive electrical systems. However, most of the load forecasting methods are not accurate. Therefore, in order to increase the accuracy of the short-term electrical load forecast, this paper proposes a hybrid method for predicting electric load based on a deep neural network with a...

2012
Yaoqun Xu Jian Liu

Shannon wavelet chaotic neural network is a kind of chaotic neural network with non-monotonous activation function composed by Sigmoid and Wavelet. In this paper, wavelet chaotic neural network models with different nonlinear self-feedbacks are proposed and the effects of the different self-feedbacks on simulated annealing are analyzed respectively. Then the proposed models are applied to the 1...

Journal: :I. J. Network Security 2018
Huang Cong Wang Chao

In order to analyze the evolvement trend of the network threat and to explore the self-perception and control problem of the security situation, the dynamic wavelet neural network model is integrated into the model design, and a kind of network security situation awareness based on the optimized dynamic wavelet neural network is put forward, so as to enhance the interaction and cognitive abilit...

2017
Weide Li Jinran Wu

Electric load forecasting plays an important role in electricity markets and power systems. Because electric load time series are complicated and nonlinear, it is very difficult to achieve a satisfactory forecasting accuracy. In this paper, a hybrid model, Wavelet Denoising-Extreme Learning Machine optimized by k-Nearest Neighbor Regression (EWKM), which combines k-Nearest Neighbor (KNN) and Ex...

نمودار تعداد نتایج جستجو در هر سال

با کلیک روی نمودار نتایج را به سال انتشار فیلتر کنید