A double Roman dominating function on a graph G=(V,E) is f:V?{0,1,2,3}, satisfying the condition that every vertex u for which f(u)=1 adjacent to at least one assigned 2 or 3, and with f(u)=0 3 two vertices 2. The weight of f equals sum w(f)=?v?Vf(v). minimum G called domination number ?dR(G) G. We obtain tight bounds in some cases closed expressions generalized Petersen graphs P(ck,k). In shor...