نتایج جستجو برای: forbidden photonic band
تعداد نتایج: 163847 فیلتر نتایج به سال:
In this article, we investigate how the photonic band gaps and the variety of band dispersions of photonic crystals can be utilized for various applications and how they further give rise to completely novel optical phenomena. The enhancement of spontaneous emission through coupled cavity waveguides in a one-dimensional silicon nitride photonic microcrystal is investigated. We then present the ...
In the first part of this introductory review we outline the developments in photonic band gap materials from the physics of photonic band gap formation to the fabrication and potential applications of photonic crystals. We briefly describe the analogies between electron and photon localization, present a simple model of a band structure calculation and describe some of the techniques used for ...
We present an experimental study of the generation of second-harmonic light in a one-dimensional periodic structure truncated by the introduction of a defect in the central period. We observed an enhancement of the nonlinear interaction in the vicinity of the defect when the second-harmonic wave was excited for modes within the forbidden zone or stop band. We also observed an enhancement near t...
Photonic crystals are periodically structured electromagnetic media, generally possessing photonic band gaps: ranges of frequency in which light cannot propagate through the structure. This periodicity, whose lengthscale is proportional to the wavelength of light in the band gap, is the electromagnetic analogue of a crystalline atomic lattice, where the latter acts on the electron wavefunction ...
We demonstrate that 2D photonic crystals can possess optical trirefringence in which there are six field orientations for which linear incident light is not perturbed on reflection or transmission. Such a property is rigorously forbidden in homogeneous nonmagnetic dielectrics which can possess only optical birefringence. We experimentally demonstrate this phenomena in silicon-based mesostructur...
We show that Mach-Zehnder interferometers (MZIs) formed from waveguides in a perfectly reflecting cladding can display manifestly different transmission characteristics to conventional MZIs due to mode recirculation and resonant reflection. Understanding and exploiting this behavior, rather than avoiding it, may lead to improved performance of photonic crystal (PC) based MZIs, for which claddin...
We introduce a novel algorithm for band structure computations based on multigrid methods. In addition, we demonstrate how the results of these band structure calculations may be used to compute group velocities and effective photon masses. The results are of direct relevance to studies of pulse propagation in such materials.
Highly dispersive photonic band-gap-edge optofluidic biosensors are studied theoretically. We demonstrate that these structures are strongly sensitive to the refractive index of the liquid, which is used to tune dispersion of the photonic crystal. The upper frequency band-gap edge shifts about 1.8 nm for δn = 0.002, which is quite sensitive. Results from transmission spectra agree well with tho...
On the basis of Maxwell's equations and a plane wave expansion method, photonic band structure is computed for 3D chalcogenide photonic crystal with diamond lattice. The geometrical influence on the photonic bandgap is studied for three dimensional chalcogenide photonic crystal of diamond lattice for both chalcogenide spheres in air and air spheres in chalcogenide background. The air spheres in...
نمودار تعداد نتایج جستجو در هر سال
با کلیک روی نمودار نتایج را به سال انتشار فیلتر کنید