نتایج جستجو برای: folding
تعداد نتایج: 28731 فیلتر نتایج به سال:
Abstract Protein folding has attracted considerable research effort in biochemistry recent decades. In this work, we explore the potential of quantum computing to solve a simplified version protein folding. More precisely, numerically investigate performance Quantum Approximate Optimization Algorithm (QAOA) sampling low-energy conformations short peptides. We start by benchmarking algorithm on ...
The cylindrical chaperonin GroEL and its lid-shaped cofactor GroES of Escherichia coli have an essential role in assisting protein folding by transiently encapsulating non-native substrate in an ATP-regulated mechanism. It remains controversial whether the chaperonin system functions solely as an infinite dilution chamber, preventing off-pathway aggregation, or actively enhances folding kinetic...
A diffusion-collision-like model is proposed for helical proteins with three-state folding dynamics. The model generalizes a previous scheme based on the dynamics of putatively essential parts of the protein (foldons) that was successfully tested on proteins with two-state folding. We show that the extended model, unlike the original one, allows satisfactory calculation of the folding rate and ...
Many essential proteins cannot fold without help from chaperonins, like the GroELS system of Escherichia coli. How chaperonins accelerate protein folding remains controversial. Here we test key predictions of both passive and active models of GroELS-stimulated folding, using the endogenous E. coli metalloprotease PepQ. While GroELS increases the folding rate of PepQ by over 15-fold, we demonstr...
Using fluorescence microscopy, we studied the catalysis by and folding of individual Tetrahymena thermophila ribozyme molecules. The dye-labeled and surface-immobilized ribozymes used were shown to be functionally indistinguishable from the unmodified free ribozyme in solution. A reversible local folding step in which a duplex docks and undocks from the ribozyme core was observed directly in si...
Protein structures in nature often exhibit a high degree of regularity (for example, secondary structure and tertiary symmetries) that is absent from random compact conformations. With the use of a simple lattice model of protein folding, it was demonstrated that structural regularities are related to high "designability" and evolutionary stability. The designability of each compact structure i...
We propose a lattice model for the secondary structure of RNA based on a self-interacting two-tolerant trail. Self-avoidance and pseudoknots are taken into account. We investigate a simple version of the model in which the native state of RNA consists of just one hairpin. Using exact arguments and Monte Carlo simulations we determine the phase diagram for this case. We show that the denaturatio...
To understand the physical and evolutionary determinants of protein folding, we map out the complete organization of thermodynamic and kinetic properties for protein sequences that share the same fold. The exhaustive nature of our study necessitates using simplified models of protein folding. We obtain a stability map and a folding rate map in sequence space. Comparison of the two maps reveals ...
Folded conformations of proteins in thermodynamically stable states have long lifetimes. Before it folds into a stable conformation, or after unfolding from a stable conformation, the protein will generally stray from one random conformation to another leading thus to rapid fluctuations. Brief structural changes therefore occur before folding and unfolding events. These short-lived movements ar...
A new class of experiments that probe folding of individual protein domains uses mechanical stretching to cause the transition. We show how stretching forces can be incorporated in lattice models of folding. For fast folding proteins, the analysis suggests a complex relation between the force dependence and the reaction coordinate for folding.
نمودار تعداد نتایج جستجو در هر سال
با کلیک روی نمودار نتایج را به سال انتشار فیلتر کنید