Let G be a graph with vertex set V(G) and edge E(G), let d(u,w) denote the length of u−w geodesic in G. For any v∈V(G) e=xy∈E(G), d(e,v)=min{d(x,v),d(y,v)}. distinct edges e1,e2∈E(G), R{e1,e2}={z∈V(G):d(z,e1)≠d(z,e2)}. Kelenc, Tratnik Yero [Discrete Appl. Math. 251 (2018) 204-220] introduced notion an resolving dimension graph: A subset S⊆V(G) is if |S∩R{e1,e2}|≥1 for dimension, edim(G), minimu...