let g be a graph with p vertices and q edges and a = {0, 1, 2, . . . , [q/2]}. a vertex labeling f : v (g) → a induces an edge labeling f∗ defined by f∗(uv) = f(u) + f(v) for all edges uv. for a ∈ a, let vf (a) be the number of vertices v with f(v) = a. a graph g is said to be vertex equitable if there exists a vertex labeling f such that for all a and b in a, |vf (a) − vf (b)| ≤ 1 and the in...