نتایج جستجو برای: connected graph

تعداد نتایج: 300740  

Journal: :J. Discrete Algorithms 2007
Gilad Liberman Zeev Nutov

We consider the following problem: given a k-(node) connected graph G find a smallest set F of new edges so that the graph G + F is (k + 1)-connected. The complexity status of this problem is an open question. The problem admits a 2approximation algorithm. Another algorithm due to Jordán computes an augmenting edge set with at most d(k− 1)/2e edges over the optimum. C ⊂ V (G) is a k-separator (...

A set of vertices $S$ in a connected graph $G$ is a different-distance set if, for any vertex $w$ outside $S$, no two vertices in $S$ have the same distance to $w$.The lower and upper different-distance number of a graph are the order of a smallest, respectively largest, maximal different-distance set.We prove that a different-distance set induces either a special type of path or an independent...

Let $G=(V,E)$ be a simple connected graph. A matching $M$ in a graph $G$ is a collection of edges of $G$ such that no two edges from $M$ share a vertex. A matching $M$ is maximal if it cannot be extended to a larger matching in $G$. The cardinality of any smallest maximal matching in $G$ is the saturation number of $G$ and is denoted by $s(G)$. In this paper we study the saturation numbe...

2015
Keren Censor-Hillel Mohsen Ghaffari George Giakkoupis Bernhard Haeupler Fabian Kuhn

A fundamental result by Karger [10] states that for any λ-edgeconnected graph with n nodes, independently sampling each edge with probability p = Ω(logn/λ) results in a graph that has edge connectivity Ω(λp), with high probability. This paper proves the analogous result for vertex connectivity, when sampling vertices. We show that for any k-vertex-connected graph G with n nodes, if each node is...

2011
Aunyarat Bunyawat Araya Chaemchan A. Bunyawat A. Chaemchan

Let m and n be positive integers with n − 1 ≤ m ≤ ( n 2 ) and CG(m,n) be the set of all non-isomorphic connected graphs of order n and size m. The vertex-connectivity and the edge-connectivity of a graph G are denoted by κ(G) and λ(G), respectively. We prove that if π ∈ {κ, λ}, then there exist positive integers a and b such that {π(G) : G ∈ CG(m,n)} = {x ∈ Z : a ≤ x ≤ b}. Thus {π(G) : G ∈ CG(m...

2013
Reza Akhtar Lucas Lee

The vertex-connectivity and edge-connectivity of the zero-divisor graph associated to a finite commutative ring are studied. It is shown that the edgeconnectivity of ΓR always coincides with the minimum degree. When R is not local, it is shown that the vertex-connectivity also equals the minimum degree, and when R is local, various upper and lower bounds are given for the vertex-connectivity.

2015
Monika Henzinger Sebastian Krinninger Veronika Loitzenbauer

We present faster algorithms for computing the 2-edge and 2-vertex strongly connected components of a directed graph, which are straightforward generalizations of strongly connected components. While in undirected graphs the 2-edge and 2-vertex connected components can be found in linear time, in directed graphs only rather simple O(mn)-time algorithms were known. We use a hierarchical sparsifi...

2003
Faisal N. Abu-Khzam Michael A. Langston

The relationship between graph coloring and the immersion order is considered. Vertex connectivity, edge connectivity and related issues are explored. These lead to the conjecture that, if G requires at least t colors, then G must have immersed within it Kt, the complete graph on t vertices. Evidence in support of such a proposition is presented. For each fixed value of t, there can be only a f...

Throughout this paper, R will denote a commutative ring with identity and M is a unitary R- module and Z will denote the ring of integers. We introduce the graph Ω(M) of module M with the set of vertices contain all nontrivial non-essential submodules of M. We investigate the interplay between graph-theoretic properties of Ω(M) and algebraic properties of M. Also, we assign the values of natura...

‎The textit{metric dimension} of a connected graph $G$ is the minimum number of vertices in a subset $B$ of $G$ such that all other vertices are uniquely determined by their distances to the vertices in $B$‎. ‎In this case‎, ‎$B$ is called a textit{metric basis} for $G$‎. ‎The textit{basic distance} of a metric two dimensional graph $G$ is the distance between the elements of $B$‎. ‎Givi...

نمودار تعداد نتایج جستجو در هر سال

با کلیک روی نمودار نتایج را به سال انتشار فیلتر کنید