For some $$\beta \ge 1/2$$ , a $$\varDelta _{\beta }$$ -metric graph $$G=(V,E,w)$$ is complete edge-weighted such that $$w(v,v)=0$$ $$w(u,v)=w(v,u)$$ and $$w(u,v) \le \beta \cdot (w(u,x)+w(x,v))$$ for all vertices $$u,v,x\in V$$ . A $$H=(V', E')$$ called spanning subgraph of $$G=(V, E)$$ if $$V'=V$$ $$E'\subseteq E$$ Given positive integer p, let H be G satisfying the three conditions: (i) ther...