نتایج جستجو برای: classifier ensemble
تعداد نتایج: 84271 فیلتر نتایج به سال:
In this paper, we introduce a new approach to the classification of streaming data based on bootstrap aggregation (bagging). The proposed approach creates an ensemble model by using ID3 classifier, naïve Bayesian classifier, and k-Nearest-Neighbor classifier for a learning scheme where each classifier gives the weighted prediction. ID3, naïve Bayesian, and k-NearestNeighbor classifiers are very...
A Classifier Ensemble combines a finite number of classifiers of same kind or different, trained simultaneously for a common classification task. The Ensemble efficiently improves the generalization ability of the classifier compared to a single classifier. Stacking is one of the most influential ensemble techniques that applies a two level structure of classification namely the base classifier...
A class-imbalanced classifier is a decision rule to predict the class membership of new samples from an available data set where the class sizes differ considerably. When the class sizes are very different, most standard classification algorithms may favor the larger (majority) class resulting in poor accuracy in the minority class prediction. A class-imbalanced classifier typically modifies a ...
Commercial and residential buildings are responsible for a substantial portion of total global energy consumption and as a result make a significant contribution to global carbon emissions. Hence, energy-saving goals that target buildings can have a major impact in reducing environmental damage. During building operation, a significant amount of energy is wasted due to equipment and human-relat...
In this paper, an Observation Points Classifier Ensemble (OPCE) algorithm is proposed to deal with High-Dimensional Imbalanced Classification (HDIC) problems based on data processed using the Multi-Dimensional Scaling (MDS) feature extraction technique. First, dimensionality of original imbalanced reduced MDS so that distances between any two different samples are preserved as well possible. Se...
To resolve class-ambiguity in real world problems, we previously presented two different ensemble approaches with support vector machines (SVMs): multiple decision templates (MuDTs) and dynamic ordering of one-vs.-all SVMs (DO-SVMs). MuDTs is a classifier fusion method, which models intra-class variations as subclass templates. On the other hand, DO-SVMs is an ensemble method that dynamically s...
نمودار تعداد نتایج جستجو در هر سال
با کلیک روی نمودار نتایج را به سال انتشار فیلتر کنید