نتایج جستجو برای: chebyshev and legendre polynomials
تعداد نتایج: 16838698 فیلتر نتایج به سال:
We show that the resultants with respect to x of certain linear forms in Chebyshev polynomials with argument x are again linear forms in Chebyshev polynomials. Their coefficients and arguments are certain rational functions of the coefficients of the original forms. We apply this to establish several related results involving resultants and discriminants of polynomials, including certain self-r...
In this paper, a numerical efficient method is proposed for the solution of time fractional mobile/immobile equation. The fractional derivative of equation is described in the Caputo sense. The proposed method is based on a finite difference scheme in time and Legendre spectral method in space. In this approach the time fractional derivative of mentioned equation is approximated by a scheme of ord...
We opt to study the convergence of maximal real roots of certain Fibonacci-type polynomials given by Gn = xGn−1 + Gn−2. The special cases k = 1 and k = 2 were done by Moore, and Zeleke and Molina, respectively. 1. Main Results In the sequel, P denotes the set of positive integers. The Fibonacci polynomials [2] are defined recursively by F0(x) = 1, F1(x) = x and Fn(x) = xFn−1(x) + Fn−2(x), n ≥ 2...
Let p > 3 be a prime, and let Rp be the set of rational numbers whose denominator is not divisible by p. Let {Pn(x)} be the Legendre polynomials. In this paper we mainly show that for m,n, t ∈ Rp with m 6≡ 0 (mod p), P[ p 6 ](t) ≡ − (3 p ) p−1 ∑ x=0 (x3 − 3x + 2t p ) (mod p)
An operational approach introduced by Gould and Hopper to the construction of generalized Hermite polynomials is followed in the hypercomplex context to build multidimensional generalized Hermite polynomials by the consideration of an appropriate basic set of monogenic polynomials. Directly related functions, like Chebyshev polynomials of first and second kind are constructed.
Multiple orthogonal polynomials are polynomials in one variable that satisfy orthogonality conditions with respect to several measures. I will briefly give some general properties of these polynomials (recurrence relation, zeros, etc.). These polynomials have recently appeared in many applications, such as number theory, random matrices, non-intersecting random paths, integrable systems, etc. I...
A method is presented to reduce the singular Lippmann-Schwinger integral equation to a simple matrix equation. This method is applied to calculate the matrix elements of the reaction and transition operators, respectively, on the real axis and on the complex plane. The phase shifts and the differential scattering amplitudes are computable as well as the differential cross sections if the R- a...
We consider a fourth-order eigenvalue problem on a semi-infinite strip which arises in the study of viscoelastic shear flow. The eigenvalues and eigenfunctions are computed by a spectral method involving Laguerre functions and Legendre polynomials.
We define a class of multivariate Laurent polynomials closely related to Chebyshev polynomials and prove the simple but somewhat surprising (in view of the fact that the signs of the coefficients of the Chebyshev polynomials themselves alternate) result that their coefficients are non-negative. As a corollary we find that Tn(c cos θ) and Un(c cos θ) are positive definite functions. We further s...
with given a, b, t0, t1 and n ≥ 0. This sequence was introduced by Horadam [3] in 1965, and it generalizes many sequences (see [1, 4]). Examples of such sequences are Fibonacci polynomials sequence (Fn(x))n≥0, Lucas polynomials sequence (Ln(x))n≥0, and Pell polynomials sequence (Pn(x))n≥0, when one has a = x, b = t1 = 1, t0 = 0; a = t1 = x, b = 1, t0 = 2; and a = 2x, b = t1 = 1, t0 = 0; respect...
نمودار تعداد نتایج جستجو در هر سال
با کلیک روی نمودار نتایج را به سال انتشار فیلتر کنید