نتایج جستجو برای: boron nitride fullerene
تعداد نتایج: 33220 فیلتر نتایج به سال:
The nucleation of cubic boron nitride (cBN) single crystals synthesized with lithium nitride (Li3N) as a catalyst under high pressure and high temperature (HPHT) was analyzed. Many nanometer-sized cubic boron nitride nuclei formed in the near surface layer, as detected by high resolution transmission electron microscopy. Based on the experiment results, the transformation kinetics is described ...
in this study, the adsorption of 4-hydroxy phenyl-azobenzene on the surface of (4, 0) zigzag open-end boron nitride nanotube (bnnt) has been investigated by quantum calculations. in order to find the preferred adsorption site, different positions and orientations were considered. the impacts of donor-acceptor electron delocalization on the structural and electronic properties and reactivity of ...
Thin films of boron nitride have been obtained by reactive pulsed laser ablation of a boron target in the presence of a 13.56 MHz radio frequency nitrogen plasma. The films have been deposited at several substrate temperatures, using the on-axis configuration, on WC–Co cutting tools, after Co removal by chemical etching (HClyHNO or HFyHNO ). Diamond polycrystalline 3 3 films of increasing thick...
High-intensity ultrasound exfoliation of a bulk-layered material is an attractive route for large-scale preparation of monolayers. The monolayer slices could potentially be prepared with a high yield (up to 100%) in a few minutes. Exfoliation of natural minerals (such as tungstenite and molybdenite) or bulk synthetic materials (including hexagonal boron nitride (h-BN), hexagonal boron carbon ni...
Selective growth of boron nitride nanotubes (BNNTs) was demonstrated by plasma-enhanced pulsed laser deposition (PE-PLD). Although PLD is a physical vapor deposition technique for the growth of boron nitride (BN) thin films, ion sputtering induced by the plasma can eliminate the formation of BN thin films and lead to the so-called total resputtering region, in which, a pure phase of BNNTs can b...
We report that few-layer hexagonal boron nitride (h-BN) nanosheets can be produced by using a surface segregation method. The formation of h-BN sheets is via an intermediate boron-nitrogen buffer layer. Our results suggest that surface segregation of boron and nitrogen from a solid source is an alternative approach to tailoring synthesis of h-BN sheets for potential applications such as in grap...
Boron nitride nanosheets (BNNSs) with micron-sized edges were prepared in high yields by direct exfoliation of bulk hexagonal boron nitrides using ionic liquids (ILs). The ILs strongly attached onto BNNS surfaces, and dramatically enhanced the exfoliation, giving highly concentrated BNNS dispersions (∼1.9 mg mL(-1)) and yields reaching ∼50%.
Background & Aims: The overall goal of utilizing nanotubes in drug delivery is to treat a disease effectively with minimum side effects and control the drug release rate. With common methods of taking the medication, such as orally and intravenously, the drug is distributed throughout the body, and the whole body is affected by the drug, and adverse side effects occur. With the development of n...
Water was investigated on a h-BN/Rh(111) nanomesh template using variable temperature scanning tunneling microscopy (STM) and density functional theory (DFT) calculations. Below 52 K, two distinct phases self-assemble within the 3.2 nm unit cell of the nanomesh that consists of "holes" and "wires". In the 2 nm holes, an ordered phase of nano-ice crystals with about 40 molecules is found. The ic...
Hexagonal boron nitride (h-BN) has recently emerged as an excellent substrate for graphene nanodevices, owing to its atomically flat surface and its potential to engineer graphene's electronic structure. Thus far, graphene/h-BN heterostructures have been obtained only through a transfer process, which introduces structural uncertainties due to the random stacking between graphene and h-BN subst...
نمودار تعداد نتایج جستجو در هر سال
با کلیک روی نمودار نتایج را به سال انتشار فیلتر کنید