نتایج جستجو برای: bayesian networks bns
تعداد نتایج: 498413 فیلتر نتایج به سال:
Two of the most popular modelling paradigms in computer vision are feed-forward neural networks (FFNs) and probabilistic graphical models (GMs). Various connections between the two have been studied in recent works, such as e.g. expressing mean-field based inference in a GM as an FFN. This paper establishes a new connection between FFNs and GMs. Our key observation is that any FFN implements a ...
Bayesian Networks (BNs) are popular graphical models for the representation of statistical problems embodying dependence relationships between a number of variables. Much of this popularity is due to the d-separation theorem of Pearl and Lauritzen, which allows an analyst to identify the conditional independence statements that a model of the problem embodies using only the topology of the grap...
Bayesian Networks (BNs) are an increasingly popular modelling technique in cyber security especially due to their capability to overcome data limitations. This is also exemplified by the growth of BN models development in cyber security. However, a comprehensive comparison and analysis of these models is missing. In this paper, we conduct a systematic review of the scientific literature and ide...
Incident management requires a full understanding of the characteristics of incidents to accurately estimate incident durations and to help make more efficient decisions, reducing the impact of non-recurring congestion. The goal of this paper is to have an articulate description of incident clearance patterns and to represent these findings with formalisms based on Bayesian Networks (BNs). BNs ...
Bayesian Networks (BNs) have received significant attention in various academic and industrial applications, such as modeling knowledge in image processing, engineering, medicine and bio-informatics. Preserving the privacy of sensitive data, owned by different parties, is often a critical issue. However, in many practical applications, BNs must train from data that gradually becomes available a...
Constraints occur in many application areas of interest to evolutionary computation. The area considered here is Bayesian networks (BNs), which is a probability-based method for representing and reasoning with uncertain knowledge. This work deals with constraints in BNs and investigates how tournament selection can be adapted to better process such constraints in the context of abductive infere...
Although the last forty years has seen considerable growth in the use of statistics in legal proceedings, it is primarily classical statistical methods rather than Bayesian methods that have been used. Yet the Bayesian approach avoids many of the problems of classical statistics and is also well suited to a broader range of problems. This paper reviews the potential and actual use of Bayes in t...
Many real life domains contain a mixture of discrete and continuous variables and can be modeled as hybrid Bayesian Networks (BNs). An important subclass of hybrid BNs are conditional linear Gaussian (CLG) networks, where the conditional distribution of the continuous variables given an assignment to the discrete variables is a multivariate Gaussian. Lauritzen’s extension to the clique tree alg...
Bayesian Networks (BNs) are widely used for knowledge representation and probabilistic inference in stochastic domains. An attempt is made in the risk modeling context to develop a general Aviation System Risk Model (ASRM) [16]. Following this initial ASRM, an operational/maintenance ASRM prototype is developed that is based on real case studies [17]. Past and current research efforts focus on ...
Background and aims: Process systems due to processed under severe operational conditions and deal with large amounts of flammable and explosive materials have always led to many catastrophic accidents. Risk assessment is a useful tool for designing effective strategies for preventing and controlling these accidents. Conventional risk assessment methods have major deficiencies, including uncert...
نمودار تعداد نتایج جستجو در هر سال
با کلیک روی نمودار نتایج را به سال انتشار فیلتر کنید