نتایج جستجو برای: absolute value equation levenberg marquardt approach conjugate subgradient

تعداد نتایج: 2197530  

Journal: Geopersia 2013

In this paper, the Artificial Neural Network (ANN) approach is applied for forecasting groundwater level fluctuation in Aghili plain,southwest Iran. An optimal design is completed for the two hidden layers with four different algorithms: gradient descent withmomentum (GDM), levenberg marquardt (LM), resilient back propagation (RP), and scaled conjugate gradient (SCG). Rain,evaporation, relative...

With the innovation of cloud computing industry lots of services were provided based on different deployment criteria. Nowadays everyone tries to remain connected and demand maximum utilization of resources with minimum timeand effort. Thus, making it an important challenge in cloud computing for optimum utilization of resources. To overcome this issue, many techniques have been proposed ...

2012
S. Suganthi K. Murugesan S. Raghavan

This paper presents Artificial Neural Network (ANN) implementation for the Radio Frequency (RF) and Mechanical modeling of lateral RF Micro Electro Mechanical System (MEMS) series micro machined Single pole double through (SPDT) switch. We propose an efficient approach based on ANN for analyzing the losses in ON and OFF state of lateral RF MEMS series switch by calculating the S-parameters. The...

Considering the wide applications of accelerometers to determine position and attitude and due to reducing of accuracy of this sensors because of some errors, this paper discusses the calibration of accelerometers. Also because the traditional calibration methods are very time consuming, costly and need precision laboratory equipment, in-field calibration methods are recommended which are simpl...

2004
Syed Muhammad Aqil Burney Tahseen Ahmed Jilani Cemal Ardil

Minimization methods for training feed-forward networks with Backpropagation are compared. Feedforward network training is a special case of functional minimization, where no explicit model of the data is assumed. Therefore due to the high dimensionality of the data, linearization of the training problem through use of orthogonal basis functions is not desirable. The focus is functional minimiz...

2013
Karim Solaimani

The present study aims to utilize an Artificial Neural Network (ANN) to modeling the rainfallrunoff relationship in a catchment area located in a semiarid region of Iran. The paper illustrates the applications of the feed forward back propagation for the rainfall forecasting with various algorithms with performance of multi-layer perceptions. The monthly stream of Jarahi Watershed was analyzed ...

2009
A. R. Moghadassi F. Parvizian S. M. Hosseini A. R. Fazlali

Equations of state are useful for description of fluid properties such as pressure-volumetemperature (PVT). However, the success estimation of such correlations depends mainly on the range of data which have originated. Therefore new models are highly required. In this work a new method is proposed based on Artificial Neural Network (ANN) for estimation of PVT properties of compounds. The data ...

2012
Salim Lahmiri

In this article, we explore the effectiveness of different numerical techniques in the training of backpropaqgation neural networks (BPNN) which are fed with wavelet-transformed data to capture useful information on various time scales. The purpose is to predict S&P500 future prices using BPNN trained with conjugate gradient (Fletcher-Reeves update, Polak-Ribiére update, Powell-Beale restart), ...

1996
J. ERIKSSON M. GULLIKSSON

We describe regularization tools for training large-scale artiicial feed-forward neural networks. In a companion paper (in this issue) we give the basic ideas and some theoretical results regarding the Gauss-Newton method compared to other methods such as the Levenberg-Marquardt method applied on small and medium size problems. We propose algorithms that explicitly use a sequence of Tikhonov re...

2010
ELNAZ DAVOODI ALI REZA KHANTEYMOORI

Artificial Neural Networks (ANNs) have been applied to predict many complex problems. In this paper ANNs are applied to horse racing prediction. We employed Back-Propagation, Back-Propagation with Momentum, QuasiNewton, Levenberg-Marquardt and Conjugate Gradient Descent learning algorithms for real horse racing data and the performances of five supervised NN algorithms were analyzed. Data colle...

نمودار تعداد نتایج جستجو در هر سال

با کلیک روی نمودار نتایج را به سال انتشار فیلتر کنید