نتایج جستجو برای: یادگیری adaboost

تعداد نتایج: 22173  

Journal: :Neural computation 1999
Leo Breiman

The theory behind the success of adaptive reweighting and combining algorithms (arcing) such as Adaboost (Freund & Schapire, 1996a, 1997) and others in reducing generalization error has not been well understood. By formulating prediction as a game where one player makes a selection from instances in the training set and the other a convex linear combination of predictors from a finite set, exis...

Journal: :Neurocomputing 2013
Iago Landesa-Vazquez José Luis Alba-Castro

Based on the use of different exponential bases to define class-dependent error bounds, a new and highly efficient asymmetric boosting scheme, coined as AdaBoostDB (Double-Base), is proposed. Supported by a fully theoretical derivation procedure, unlike most of the other approaches in the literature, our algorithm preserves all the formal guarantees and properties of original (cost-insensitive)...

Journal: :IJPRAI 2006
Yijun Sun Sinisa Todorovic Jian Li

AdaBoost rarely suffers from overfitting problems in low noise data cases. However, recent studies with highly noisy patterns have clearly shown that overfitting can occur. A natural strategy to alleviate the problem is to penalize the data distribution skewness in the learning process to prevent several hardest examples from spoiling decision boundaries. In this paper, we pursue such a penalty...

2010
Pannagadatta K. Shivaswamy Tony Jebara

Concentration inequalities that incorporate variance information (such as Bernstein’s or Bennett’s inequality) are often significantly tighter than counterparts (such as Hoeffding’s inequality) that disregard variance. Nevertheless, many state of the art machine learning algorithms for classification problems like AdaBoost and support vector machines (SVMs) extensively use Hoeffding’s inequalit...

Journal: :Image Vision Comput. 2014
Jingsong Xu Qiang Wu Jian Zhang Zhenmin Tang

Recently, Universum data that does not belong to any class of the training data, has been applied for training better classifiers. In this paper, we address a novel boosting algorithm called UadaBoost that can improve the classification performance of AdaBoost with Universum data. UadaBoost chooses a function by minimizing the loss for labeled data and Universum data. The cost function is minim...

Journal: :EURASIP J. Wireless Comm. and Networking 2017
Tong Liu Yanan Guan Yun Lin

Modulation scheme recognition occupies a crucial position in the civil and military application. In this paper, we present boosting algorithm as an ensemble frame to achieve a higher accuracy than a single classifier. To evaluate the effect of boosting algorithm, eight common communication signals are yet to be identified. And five kinds of entropy are extracted as the training vector. And then...

Journal: :JCP 2014
Rui Li Changfeng Li

Excessive number of Haar-like features and the complex threshold calculation of covariance matrix feature are two key issues of Adaboost face detection. In this paper, an efficient feature named covariance feature is proposed. The novel method divides the face image into several regions and it calculate covariance feature of any two regions. Then optimal weak classifiers will be picked out by A...

2016
Mai F. Tolba Mohamed Moustafa

Boosted cascade of simple features, by Viola and Jones, is one of the most famous object detection frameworks. However, it suffers from a lengthy training process. This is due to the vast features space and the exhaustive search nature of Adaboost. In this paper we propose GAdaboost: a Genetic Algorithm to accelerate the training procedure through natural feature selection. Specifically, we pro...

2009
Doaa Hegazy Joachim Denzler

SoftBoost is a recently presented boosting algorithm, which trades off the size of achieved classification margin and generalization performance. This paper presents a performance evaluation of SoftBoost algorithm on the generic object recognition problem. An appearance-based generic object recognition model is used. The evaluation experiments are performed using a difficult object recognition ...

2003
Xuchun Li Lei Wang Eric Sung

Recently, AdaBoost has been widely used in many computer vision applications and has shown promising results. However, it is also observed that its classification performance is often poor when the size of the training sample set is small. In certain situations, there may be many unlabelled samples available and labelling them is costly and time-consuming. Thus it is desirable to pick a few goo...

نمودار تعداد نتایج جستجو در هر سال

با کلیک روی نمودار نتایج را به سال انتشار فیلتر کنید