نتایج جستجو برای: معادلات انتگرال

تعداد نتایج: 26471  

پایان نامه :دانشگاه تربیت معلم - تهران - دانشکده علوم ریاضی و مهندسی کامپیوتر 1390

در این پایان نامه، حل عددی معادلات انتگرال فردهلم و ولترای نوع دوم و معادلات انتگرال-دیفرانسیل ولترا-فردهلم غیر خطی ارائه شده است. معادلات انتگرال فردهلم و ولترای نوع دوم را با استفاده از توابع هیبرید و هار حل می کنیم و جواب تقریبی به دست آمده را با این دو مجموعه از توابع مقایسه می کنیم. معادله انتگرال-دیفرانسیل ولترا-فردهلم را با استفاده از توابع هیبرید حل می کنیم‎. اساس این روش بر روی تقریب ...

پایان نامه :دانشگاه تربیت معلم - تهران - دانشکده علوم ریاضی و مهندسی کامپیوتر 1389

تمرکز این رساله روی حل عددی معادلات انتگرال دو بعدی خطی و غیر خطی نوع اول و دوم می باشد چند روش عددی مبتنی بر استفاده از توابع پالس بلوکی و توابع هارگویا شده دو بعدی ارایه شده است. همچنین یک روش عددی که روش های اویلر و ذوزنقه ای را برای تقریب جوای یک خانواده از معادلات انتگرال ولترای دو بعدی غیر خطی به کار می برد ارایه شده است. روش های فوق معادلات انتگرال خطی و غیر خطی در نظر گرفته شده را به تر...

پایان نامه :وزارت علوم، تحقیقات و فناوری - دانشگاه الزهراء - دانشکده علوم پایه 1392

در این پایان نامه ابتدا به حل مسأله مقدار اولیه مرتبه کسری به شکل زیر با استفاده از چندجمله ای های برنشتاین می پردازیم: که در آن y(t) تابع مجهول، ?(_*^)d?^? y(t)مشتق کسری از نوع کاپوتو از مرتبه ? > 0 و ? > ?k > ?_(k-?) >? > ?_1 می باشد. برای حل این معادلات ابتدا جواب مساله را به صورت تقریب می‏زنیم که در آن c^t بردار مجهول و b(t) بردار پایه برنشتاین است، سپس با استفاده از ماتریس عملیاتی...

پایان نامه :وزارت علوم، تحقیقات و فناوری - دانشگاه شهید باهنر کرمان - دانشکده ریاضی و کامپیوتر 1390

در این پایان نامه، با بکارگیری موجک های دابیشز در روش گالرکین به حل معادلات فردهلم نوع دوم خطی، غیرخطی و تکین پرداخته شده است . بعد از گسسته سازی، معادلات انتگرال خطی و غیرخطی بترتیب به یک دستگاه خطی و غیرخطی از معادلات تبدیل می شوند. برای حالت خطی می توان ماتریس را توسط تبدیل سریع موجک به یک ماتریس متقارن و تنک تبدیل نمود. مزیت اصلی روش ارائه شده در این نوشتار نسبت به سایر روش ها، محاسبه ...

پایان نامه :دانشگاه آزاد اسلامی - دانشگاه آزاد اسلامی واحد تهران مرکزی - دانشکده علوم 1391

در بسیاری از مسائل طبیعی به معادلات دیفرانسیل و معادلات انتگرال برخورد می کنیم. بسیاری از این معادلات به دلیل ساختار طبیعی و سازگار پذیری که دارند معمولا در حالت آشوبگونه قرار می گیرند. لذا بررسی مدل اینگونه معادلات امروزه از اهمیت بسیار زیادی برخوردار است. در این پایان نامه به بررسی معادلات انتگرال آشوبگونه با تغییر پارامتر ضریب می پردازیم. در این راستا برای حل عددی معادلات انتگرال اقدام به ا...

پایان نامه :وزارت علوم، تحقیقات و فناوری - دانشگاه تبریز - دانشکده ریاضی 1391

در این رساله، جواب های عددی و تقریبی کلاس هایی از معادلات انتگرال و انتگرال دیفرانسیل غیر خطی را مورد مطالعه قرار خواهیم داد. با بیان قضایای وجود و منحصربفردی، روشهای پیشرفته عددی مانند هم محلی، تبدیل دیفرانسیل و خطی سازی را بری حل معادلات انتگرال ولترا-فردهلم غیر خطی، معادلات انتگرال منفرد و معادلات انتگرال دیفرانسیل دو بعدی غیر خطی با اعمال برخی شرایط قابل اثبات روی هسته معادلات و توابع غیر خ...

پایان نامه :وزارت علوم، تحقیقات و فناوری - دانشگاه ملایر - دانشکده ریاضی 1392

در این پایان نامه روش تبدیل لاپلاس برای حل عددی معادلات انتگرال ولترا خطی استفاده شده است. همچنین با ترکیب تبدیل لاپلاس و تجزیه آدومیان با حدس اولیه یک روش تکراری برای حل عددی معادلات انتگرال ولترا غیرخطی و دستگاه معادلات انتگرال ولترا خطی و غیرخطی پیشنهاد شده است. علاوه بر این با یک تغییرساده در حدس اولیه یک الگوریتم برای یافتن جواب دقیق بعضی از معادلات انتگرال ولترا غیرخطی و همچنین دستگاه معا...

پایان نامه :دانشگاه تربیت معلم - تهران - دانشکده علوم ریاضی و مهندسی کامپیوتر 1390

برای حل معادلات انتگرال پریشنده منفرد و معادلات انتگرال-دیفرانسیل ولترا مرتبه اول و معادلات انتگرال-دیفرانسیل تأخیری ولترا، از روش بسط متناهی لژاندر و برای حل معادلات انتگرال ولترا با هسته های لگاریتمی از بسط متناهی چبیشف استفاده می کنیم و به تحلیل خطا و بعد از آن به بررسی مقایسه بین نتایج به دست آمده با دیگر روش ها می پردازیم.

ژورنال: :پژوهش های اقلیم شناسی 0
اسماعیل قیصری دانشجوی کارشناسی ارشد هواشناسی، مؤسسه ژئوفیزیک دانشگاه تهران، تهران، انتهای خیابان کارگر شمالی، مؤسسه ژئوفیزیک، گروه فیزیک فضا، سرمد قادر دکتری مهندسی مکانیک، دانشیار، مؤسسه ژئوفیزیک دانشگاه تهران علی علی اکبری بیدختی دکتری دینامیک شاره های ژئوفیزیکی، استاد، مؤسسه ژئوفیزیک دانشگاه تهران

مطالعه فیزیکی معادلات آب کم عمق یکی از مسائل مطرح در دینامیک شاره های ژئوفیزیکی است. در این کار به بررسی عملکرد روش فشرده ترکیبی مرتبه ششم برای حل عددی معادلات آب کم عمق یک بُعدی پرداخته می شود. برای مقایسه حل عددی با سایر روش های تفاضل متناهی، معادلات آب کم عمق یک بعدی به سه روش حل شده و نتایج حاصل برای یک آزمون موردی مقایسه می شود. در این حل عددی، برای انتگرال گیری بخش زمانی معادلات از روش رون...

پایان نامه :وزارت علوم، تحقیقات و فناوری - دانشگاه صنعتی خواجه نصیرالدین طوسی 1390

در این پایان نامه حل عددی معادلات انتگرال فردهلم نوع دوم با هسته های هموار و منفرد ضعیف مورد بررسی قرار می گیرد. بدین منظور ابتدا توابع متعامد لورانت را معرفی و برخی خواص آنها را مورد بررسی قرار می دهیم. سپس با استفاده از این توابع متعامد به حل عددی معادلات انتگرالی با هسته هموار پرداخته می شود. قسمت پایانی رساله روش جدیدی مبتنی بر دستگاهی از چندجمله ایهای معرفی شده، برای حل معادلات انتگرالی من...

نمودار تعداد نتایج جستجو در هر سال

با کلیک روی نمودار نتایج را به سال انتشار فیلتر کنید