نتایج جستجو برای: مدل bagging

تعداد نتایج: 122039  

2016
Evan Dowey Matthew Johnson

................................................................................................................................................... vi 1. Background ........................................................................................................................................... 1 1.1 Carbon Fiber ............................................................................

1996
Leo Breiman

Bagging predictors is a method for generating multiple versions of a predictor and using these to get an aggregated predictor. The aggregation averages over the versions when predicting a numerical outcome and does a plurality vote when predicting a class. The multiple versions are formed by making bootstrap replicates of the learning set and using these as new learning sets. Tests on real and ...

با توجه به اهمیت کیفیت گوشت و سایر مواد غذایی مورد مصرف روزانه در رشد و سلامت جامعه انسانی، توسعه سامانه‌های تشخیص و پایش کیفیت مواد غذایی بیش از پیش مورد توجه محققین می‌باشد. در این مطالعه 40 نمونه‌ گوشت گوساله در طی پنج روز ماندگاری در دمای پنج درجه سانتیگراد مورد تصویربرداری ماکروسکوپیک و طیف­نگاری توان دی­الکتریک در 20 فرکانس از بازه MHz 100- 5 قرار گرفت. فرضیه مطالعه بر این اساس بود که با ...

2000
Andreas Buja Werner Stuetzle

Bagging is a device intended for reducing the prediction error of learning algorithms. In its simplest form, bagging draws bootstrap samples from the training sample, applies the learning algorithm to each bootstrap sample, and then averages the resulting prediction rules. We study the von Mises expansion of a bagged statistical functional and show that it is related to the Stein-Efron ANOVA ex...

1996
J. Ross Quinlan

Breiman's bagging and Freund and Schapire's boosting are recent methods for improving the predictive power of classiier learning systems. Both form a set of classiiers that are combined by voting, bagging by generating replicated boot-strap samples of the data, and boosting by adjusting the weights of training instances. This paper reports results of applying both techniques to a system that le...

2011
Quan Sun Bernhard Pfahringer

Ensemble selection has recently appeared as a popular ensemble learning method, not only because its implementation is fairly straightforward, but also due to its excellent predictive performance on practical problems. The method has been highlighted in winning solutions of many data mining competitions, such as the Netflix competition, the KDD Cup 2009 and 2010, the UCSD FICO contest 2010, and...

1998
Bruce A. Draper Kyungim Baek

Previous research has shown that aggregated predictors improve the performance of non-parametric function approximation techniques. This paper presents the results of applying aggregated predictors to a computer vision problem, and shows that the method of bagging signi cantly improves performance. In fact, the results are better than those previously reported on other domains. This paper expla...

2003
J R Quinlan

Breiman s bagging and Freund and Schapire s boosting are recent methods for improving the predictive power of classi er learning systems Both form a set of classi ers that are combined by voting bagging by generating replicated boot strap samples of the data and boosting by ad justing the weights of training instances This paper reports results of applying both techniques to a system that learn...

Journal: : 2022

در این پژوهش سعی می‌­شود مدلی برای شبیه‌­سازی چرخه عمر صنعت برق با استفاده از شبیه‌سازی عامل­بنیان ارائه شود، مدل، 5 عامل استخراج شد و شبیه­‌سازی به کمک نرم‌افزار Anylogic صورت پذیرفت. بهینه‌­سازی مدل چهار سناریو نظر خبرگان شد. سناریوی نخست، جذابیت نیروگاه گازی سیکل ترکیبی کاهش یافت بر دو دیگر افزوده نتیجه افزایش تولید آبی است که توجه کمبود منابع کشور به‌صرفه نیست. دوم ورود یک فناوری جدید میزان...

نمودار تعداد نتایج جستجو در هر سال

با کلیک روی نمودار نتایج را به سال انتشار فیلتر کنید