نتایج جستجو برای: شبکه عصبی آشوب گونه

تعداد نتایج: 99675  

در سال‌های اخیر آلودگی هوا به عنوان یکی از بزرگ ترین مشکلات زیست محیطی در سطح جهانی مطرح شده است. ازن تروپوسفری یک آلاینده ثانویه است و سبب بروز مشکلات تنفسی و تاثیر حاد بر گیاهان می‌شود. در این مطالعه به دلیل غیر خطی بودن و پیچیدگی این پدیده‌هابه مقایسه برآورد غلظت آلاینده ازن با استفاده از شبکه عصبی مصنوعی و شبکه عصبی فازی-تطبیقی پرداخته شد. در پژوهش حاضر از متغیرهای هواشناسی در ...

ژورنال: دانش آب و خاک 2017
افشین اقبال‎زاده فرشته نورمحمدی ده بالایی, مهوش نورمحمدی ده‎بالایی میترا جوان,

در این تحقیق از مدل شبکه عصبی پرسپترون چند لایه(MLP-NN) برای شبیه‎سازی اکسیژن محلول و فسفر کل در حوضه آبریز سد ایلام استفاده شد. مدل شبکه عصبی با استفاده از داده‎های آزمایشگاهی سه زیرحوضه سد ایلام در سال‎های 89-1388 طراحی گردید. متغیرهای ورودی شبکه عصبی برای مدل‎سازی اکسیژن محلول شامل اسیدیته آب، هدایت الکتریکی، کل جامدات معلق، دما، فسفر کل، سولفات، آمونیوم، آهن و نیتروژن کل بودند. متغیرهای ورو...

ژورنال: فرآیند نو 2018

در این پژوهش با استفاده از شبکه عصبی و عصبی-فازی ضریب انتقال حرارت در نانوسیالات جاری در یک لوله مدور در رژیم جریان آشفته مدلسازی و پیش‌بینی شده است. داده‌های ورودی به مدل، عدد رینولدز و کسر حجمی نرمال شده نانو‌ذرات و خروجی آن ضریب انتقال حرارت نرمال شده است. در شبکه عصبی استفاده شده مقادیر متوسط خطای نسبی و متوسط مربع خطا نسبت به نتایج آزمایشگاهی به‌ترتیب برابر 002/0 و 0005/0 می‌باشد، در شبکه ...

ژورنال: :پژوهشهای حسابداری مالی وحسابرسی 2014
علی اصغر انواری رستمی عادل آذر محمد نوروزی

پیش بینی سود هر سهم و تغییرات آن به عنوان یک رویداد اقتصادی از دیرباز موردعلاقه سرمایه گذاران، مدیران، تحلیل گران مالی و اعتباردهندگان بوده است. این توجه ناشی از استفاده سود در مدل های ارزیابی سهام، کمک به کارکرد کارای بازار سرمایه، ارزیابی توان پرداخت و ارزیابی عملکرد واحد اقتصادی می باشد. هدف این تحقیق پیش بینی سود هر سهم با استفاده از شبکه عصبی – فازی و شبکه عصبی درک چندلایه(mlp) و gmdh و تع...

ژورنال: :پژوهش های مدیریت در ایران 2010
محمدرضا امین ناصری احمد کوچک زاده

یکی از گامهای مهم در توسعه شبکه های عصبی مصنوعی طراحی معماری شبکه است که تأثیر زیادی بر عملکرد شبکه دارد. در طراحی معماری شبکه های عصبی مصنوعی، عواملی از قبیل تعداد لایه های پنهان، تعداد نرون ها در هر لایه، توابع تبدیل و الگوریتم آموزش باید تعیین شوند. محققان در طراحی معماری شبکه به طور عمده از طریق سعی و خطا عمل می کنند و یا اینکه اثر متقابل بین عوامل مختلف در طراحی معماری شبکه را در نظر نمی گ...

ژورنال: :نشریه مهندسی صنایع 2010
مهدی خاشعی مهدی بیجاری

یکی از مشکلات مهم در پیش بینی با شبکه های عصبی مصنوعی، فراهم کردن داده های لازم برای پیش بینی است؛ چرا که شبکه های عصبی برای حصول نتایج دقیق نیاز به داده های زیادی دارند. اما باید توجه داشت که جمع آوری داده های مورد نیاز شبکه، نخست، بسیار هزینه بر است و دوم، مدت زمان طولانی را طلب می کند. بنابراین با توجه به تغییرات سریع در محیط های واقعی و به ویژه سیستم های اقتصادی و مالی، پیش بینی در این گونه...

یکی از گزینه‌های موجود جهت سرمایه گذاری نقدینگی، بورس و اوراق بهادار می‌باشد. با توجه به ارتباطات غیرخطی موجود میان متغیرهای موثر بر قیمت سهام، شبکه های عصبی مصنوعی یکی از مناسب ترین رویکردهای موجود جهت پیش‌بینی قیمت سهام می باشند. در این مقاله سعی شده تا از طریق ترکیب نگاشت‌های آشوبی و الگوریتم رقابت استعماری، زاویه حرکتی مستعمرات به سمت استعمارگر اصلاح شده و به این ترتیب احتمال قرارگیری در دا...

پایان نامه :وزارت علوم، تحقیقات و فناوری - دانشگاه بوعلی سینا - دانشکده مهندسی 1390

جبرانسازی سری با خازن روشی است که در سیستم های قدرت برای کاهش مشکلات ناشی از راکتانس خطوط انتقال استفاده می شود. با کاهش راکتانس موثر خطوط، این خازن ها می توانند پایداری گذرا را افزایش و قابلیت بارپذیری این خطوط را بهبود دهند و همچنین با کنترل مقدار این راکتانس می توان بار به اشتراک گذاشته بین خطوط موازی را بهتر کنترل نمود. این فواید باعث شده است که این خازن ها بطور گسترده ای در سیستم های قدرت ...

اردوان قربانی بهنام بهرامی,

اندازه گیری مستقیم تنوع گونه­ای امری وقت­گیر و ­هزینه­بر بوده و تا حدی به دلیل خطاهای حاصل از نمونه­گیری غیرقابل اعتماد است. این مطالعه با هدف تعیین فاکتور­های کم­هزینه در پیش­بینی تنوع گونه­ای بوسیله شبکه مدل­های عصبی مصنوعی، شبکه عصبی تطبیقی-فازی و رگرسیونی انجام شد. نمونه­برداری با استفاده از روش سیستماتیک-تصادفی از 60 قطعه نمونه در طول 6 ترانسکت 100 متری و از عمق 30-0 سانتی­متری خاک صورت گر...

سعید مهدوری مهدی یاوری,

در این مقاله ابتدا برخی از روش‌های پیش‌بینی نرخ‌نفوذ TBM مرور شده و سپس نرخ‌نفوذ با منظور کردن پارامترهای نوع سنگ، درصد کوارتز، مقاومت فشاری تک‌محوره، قطر دیسک، نیروی نفوذ هر دیسک و RQD با استفاده از شبکه عصبی پیش‌بینی شده است. با حذف RQD و درصد کوارتز از پارامترهای ورودی، حساسیت شبکه نسبت به حذف این پارامترها مورد بررسی قرار گرفته است. مقایسة نتایج شبکه عصبی با مدل تجربی گراهام، توانایی شبکه ...

نمودار تعداد نتایج جستجو در هر سال

با کلیک روی نمودار نتایج را به سال انتشار فیلتر کنید