نتایج جستجو برای: ایدآل نسبی
تعداد نتایج: 27065 فیلتر نتایج به سال:
فرض کنیمm یک r-مدول و a یک ایدآل از حلقه r باشد. کلاس s از r-مدول ها، زیر رسته سر از رسته r-مدول هاست در صورتیکه تحت تحت زیر مدولها، مدولهای خارج قسمتی و توسیع مدولها بسته باشد.عضویت مدول های کوهمولوزی موضعی، در زیر رسته سر از رستهr-مدول ها به ازای in بررسی شده است.دنباله های s-منظم و تعمیم یافتگی عمق تعریف شده است و رابطه این نماد با کوهمولوژی موضعی بیان شده است.از طرفی اگر m یک r-مدو...
در این پایان نامه ابتدا به معرفی خاصیت a می پردازیم. سپس خاصیت a را به حلقه های ناجابجایی توسیع می دهیم و برخی از توسیع های حلقه ای که خاصیت a دارد را بررسی میکنیم.( برای مثال: حلقه ماتریس ها حلقه چندجمله ای ها، حلقه سری های توانی و حلقه کسرهای کلاسیک ) کلاس حلقه هایی که خاصیت a دارند بسیار بزرگ است. از جمله هر حلقه جابجایی نوتری که هر ایدآل اول آن ماکسیمال باشد خاصیت a دارد...
fa-abstract{در این پایان نامه به طور کلی $x$ یک فضای توپولوژی هاسدورف و کاملاً منظم و $c(x)$ و $c^*(x)$ به ترتیب حلقه ی تمام توابع پیوسته ی حقیقی مقدار و حلقه ی تمام توابع پیوسته ی حقیقی مقدار کراندار روی $x$ هستند, در ابتدا ایدآل $mathcal{p}$ از زیرمجموعه های بسته ی فضای $x$ را تعریف می کنیم, سپس بحث را با دو زیرحلقه ی $c_mathcal{p}(x)$ و $c^mathcal{p}_infty(x)$ از حلقه ...
یک همسایگی معین در فضای x، خانوادهی ? متشکل از همه ی زیرمجموعه های باز x است که برای هر x متعلق به x داشته باشیم x متعلق به یکی از اعضای ?. زیر مجموعه ی y از x را یک کرنل ? می نامیم، هرگاه اجتماع اعضای ? برای اعضای y برابر x شود. برای هر کلاس ( یا ویژگی) p، یک کلاس دوگان pd تعریف می کنیم که شامل همه ی فضاهای x است که برای هر همسایگی معین ? در x ، زیر فضای y از x موجود باشد که y متعلق به p و ...
در فصل اول تعاریف و مفاهیم مقدماتی پایان نامه را آورده ایم. در فصل دوم ابتدا (a(i را تعریف و سپس نشان می دهیم که (a(i یک سیستم مرتب جزیی راست می باشد که در شرط (e) صدق می کند اما در شرط (p) صدق نمی کند. سپس به بررسی شرایطی روی تکواره مرتب جزیی s می پردازیم که تحت آن شرایط (a(i دارای خواص (p_w)، به طور ضعیف هموار مرتب جزیی، به طور اساسی ضعیف هموار مرتب جزیی، بدون تاب و بدون تاب مرتب جزیی باشد....
فرض کنیم rیک حلقه جابجایی و یکدار باشد. در این پایان نامه، ابتدا مدول های فول اول معرفی می شوند. هر r-مدول فول-اول دارای طیف اول های ناتهی و نگاشت طبیعی پوشاست. نشان داده می شود که این کلاس از مدول ها به طور سره شامل مدول های آزاد و مدول های متناهی- تولید می باشد. همچنین روی یک دامنه صحیح تمام مدول های تصویری، فول-اول هستند. نشان می دهیم که نظریه طیف اول های مدول های فول-اول بسیار شبیه مدول های...
چکیده فرض کنیم a یک جبرباناخ باشد. در این پایان نامه مفاهیم مختلف آنالیز را روی رده ای خاص از جبرهای باناخ یعنی جبرهای سگال مجرد مورد مطالعه قرار می دهیم. در ادامه، ارتباط بین همانی تقریبی یک جبر باناخ و همانی تقریبی زیر جبرهای سگال مجرد آن را بررسی خواهیم کرد. به علاوه، بحث جامعی در مورد ایدآل های این دسته ی خاص از جبرهای باناخ ارائه خواهیم نمود. همچنین، ضرب تانسوری تصویری دو جبر سگال مجرد ب...
فرض کنیم r یک حلقه و m یک –r مدول چپ باشد. زیر مدول سره l از m، رادیکال است اگر l اشتراکی از زیرمدول های اول m باشد. به علاوه زیر مدول l از m ایزوله است اگر برای هر زیر مدول سره n از l، یک زیر مدول اول k از m وجود داشته باشد به طوری که n?k اما l?k. در این مقاله ثابت می شود که هر زیر مدول سره m (و از این رو هر زیر مدول m) ایزوله است اگر و تنها اگر برای هر زیر مدول n از m و هر ایده آل (اولیه چپ) ...
سن گلخوار یونجه، Lygus rugulipennis Poppius (Hemiptera: Miridae)، یکی از آفات مهم یونجه در بسیاری نقاط جهان میباشد. زیستشناسی آزمایشگاهی و پراسنجههای جدول زندگی این آفت پنج دمای 25، 5/27، 30، 5/32 35 درجه سلسیوس، رطوبت نسبی 5 ±60 درصد دوره نوری 16 ساعت روشنایی 8 تاریکی مورد بررسی قرار گرفت. قادر به نشوونما سلسیوس نبود. طولانیترین کوتاهترین طول پورگی بهترتیب 5/27 (81/13 روز) (08/8 بهدست آ...
اگر x فضای فشرده حقیقی باشد اشتراک همه ایدآل های ماکسیمال آزاد c(x) با ck(x) برابر است و هر فضایی که چنین ویژگی داشته باشد، ?-فشرده نامیده می شود. در سال 1969 ماندلکر زیر مجموعهی گرد در فضای ?x را تعریف کرد و در سال 1973 به همراه جانسون نشان دادند که?x کوچکترین فضای? -فشرده بین x,?x می باشد.همچنین ماندلکر نشان داد که فضای x،یک p-فضا است اگر وتنها اگر هر زیر مجموعه ی ?x گرد باشد. در این رساله ن...
نمودار تعداد نتایج جستجو در هر سال
با کلیک روی نمودار نتایج را به سال انتشار فیلتر کنید