نتایج جستجو برای: zinc metalloenzymes
تعداد نتایج: 74030 فیلتر نتایج به سال:
Superoxide dismutases (SODs) are ubiquitous metalloenzymes that catalyze the dismutation of superoxide radicals. Chloroplasts have two isozymes, copper/zinc SOD (Cu/ZnSOD) and iron SOD (FeSOD), encoded by nuclear genes. Because bryophytes are considered as the earliest land plants, they are one of the most interesting plant models for adaptation against oxidative stress. In a previous study, we...
Mercury has a high affinity for sulfhydryl groups, inactivating numerous enzymatic reactions, amino acids, and sulfur-containing antioxidants (N-acetyl-L-cysteine, alpha-lipoic acid, L-glutathione), with subsequent decreased oxidant defense and increased oxidative stress. Mercury binds to metallothionein and substitute for zinc, copper, and other trace metals, reducing the effectiveness of meta...
Hybrid QM:QM (quantum mechanics:quantum mechanics) and QM:MM (quantum mechanics:molecular mechanics) methods are widely used to calculate the electronic structure of large systems where a full quantum mechanical treatment at a desired high level of theory is computationally prohibitive. The ONIOM (our own N-layer integrated molecular orbital molecular mechanics) approximation is one of the more...
1,25-dihydroxyvitamin D(3) (1,25D) regulates gene expression by signaling through the nuclear vitamin D receptor (VDR) transcription factor and exhibits calcium homeostatic, anticancer, and immunomodulatory properties. Histone deacetylase inhibitors (HDACis) alter nuclear and cytoplasmic protein acetylation, modify gene expression, and have potential for treatment of cancer and other indication...
AM1/d parameters are derived for magnesium, optimized for modeling reactions in metalloenzymes. The parameters are optimized with a Monte Carlo procedure so as to reproduce the geometries and energies of a training set calculated with density functional theory. The training set consists of compounds with magnesium coordinated to the oxygen atom of typical biological ligands. Optimization of AM1...
Mononuclear metalloenzymes in nature can function in cooperation with precisely positioned redox-active organic cofactors in order to carry out multielectron catalysis. Inspired by the finely tuned redox management of these bioinorganic systems, we present the design, synthesis, and experimental and theoretical characterization of a homologous series of cobalt complexes bearing redox-active pyr...
Mononuclear metalloenzymes in nature can function in cooperation with precisely positioned redox-active organic cofactors in order to carry out multielectron catalysis. Inspired by the finely tuned redox management of these bioinorganic systems, we present the design, synthesis, and experimental and theoretical characterization of a homologous series of cobalt complexes bearing redox-active pyr...
نمودار تعداد نتایج جستجو در هر سال
با کلیک روی نمودار نتایج را به سال انتشار فیلتر کنید