نتایج جستجو برای: vacuum bagging

تعداد نتایج: 49193  

2017
Cao Truong Tran Mengjie Zhang Peter Andreae Bing Xue

Missing values are an unavoidable issue of many real-world datasets. Dealing with missing values is an essential requirement in classification problem, because inadequate treatment with missing values often leads to large classification errors. Some classifiers can directly work with incomplete data, but they often result in big classification errors and generate complex models. Feature selecti...

Journal: :Pattern Recognition Letters 2003
Nitesh V. Chawla Thomas E. Moore Lawrence O. Hall Kevin W. Bowyer W. Philip Kegelmeyer Clayton Springer

Bagging forms a committee of classifiers by bootstrap aggregation of training sets from a pool of training data. A simple alternative to bagging is to partition the data into disjoint subsets. Experiments with decision tree and neural network classifiers on various datasets show that, given the same size partitions and bags, disjoint partitions result in performance equivalent to, or better tha...

Journal: :IEICE Transactions on Information and Systems 2011

Journal: :International Journal of Computer Applications 2012

2012
Prasanna Kumari

-Classification is one of the data mining techniques that analyses a given data set and induces a model for each class based on their features present in the data. Bagging and boosting are heuristic approaches to develop classification models. These techniques generate a diverse ensemble of classifiers by manipulating the training data given to a base learning algorithm. They are very successfu...

2007
Ming-Fang Weng Chun-Kang Chen Yi-Hsuan Yang Rong-En Fan Yu-Ting Hsieh Yung-Yu Chuang Winston H. Hsu Chih-Jen Lin

In TRECVID 2007 high-level feature (HLF) detection, we extend the well-known LIBSVM and develop a toolkit specifically for HLF detection. The package shortens the learning time and provides a framework for researchers to easily conduct experiments. We efficiently and effectively aggregate detectors of training past data to achieve better performances. We propose post-processing techniques, conc...

Journal: :Journal of Statistical Planning and Inference 2007

2007
Frédéric RATLE Devis TUIA

This paper investigates the use of ensemble of predictors in order to improve the performance of spatial prediction methods. Support vector regression (SVR), a popular method from the field of statistical machine learning, is used. Several instances of SVR are combined using different data sampling schemes (bagging and boosting). Bagging shows good performance, and proves to be more computation...

2016
Andreas Buja Werner Stuetzle

Bagging is a device intended for reducing the prediction error of learning algorithms. In its simplest form, bagging draws bootstrap samples from the training sample, applies the learning algorithm to each bootstrap sample, and then averages the resulting prediction rules. We extend the definition of bagging from statistics to statistical functionals and study the von Mises expansion of bagged ...

نمودار تعداد نتایج جستجو در هر سال

با کلیک روی نمودار نتایج را به سال انتشار فیلتر کنید