نتایج جستجو برای: unique domination

تعداد نتایج: 266295  

2008

Motivated by a question of Krzysztof Oleszkiewicz we study a notion of weak tail domination of random vectors. We show that if the dominating random variable is sufficiently regular weak tail domination implies strong tail domination. In particular positive answer to Oleszkiewicz question would follow from the so-called Bernoulli conjecture. Introduction. This note is motivated by the following...

2011
POLONA PAVLIČ JANEZ ŽEROVNIK

Using algebraic approach we implement a constant time algorithm for computing the domination numbers of the Cartesian products of paths and cycles. Closed formulas are given for domination numbers γ(Pn Ck) (for k ≤ 11, n ∈ N) and domination numbers γ(Cn Pk) and γ(Cn Ck) (for k ≤ 7, n ∈ N).

Journal: :Discussiones Mathematicae Graph Theory 2008
Anthony Bonato Changping Wang

Domination parameters in random graphs G(n, p), where p is a fixed real number in (0, 1), are investigated. We show that with probability tending to 1 as n → ∞, the total and independent domination numbers concentrate on the domination number of G(n, p).

Journal: :Discussiones Mathematicae Graph Theory 2004
Teresa W. Haynes Michael A. Henning Lora Hopkins

A set S of vertices in a graph G = (V,E) is a total dominating set of G if every vertex of V is adjacent to a vertex in S. The total domination number of G is the minimum cardinality of a total dominating set of G. The total domination subdivision number of G is the minimum number of edges that must be subdivided (where each edge in G can be subdivided at most once) in order to increase the tot...

2014
Marcin Krzywkowski

We initiate the study of total outer-independent domination in graphs. A total outer-independent dominating set of a graph G is a set D of vertices of G such that every vertex of G has a neighbor in D, and the set V (G) \ D is independent. The total outer-independent domination number of a graph G is the minimum cardinality of a total outer-independent dominating set of G. First we discuss the ...

Journal: :Australasian J. Combinatorics 2011
Nader Jafari Rad

For a graph G, let f : V (G) → P({1, 2, . . . , k}) be a function. If for each vertex v ∈ V (G) such that f(v) = ∅ we have ∪u∈N(v)f(u) = {1, 2, . . . , k}, then f is called a k-rainbow dominating function (or simply kRDF) of G. The weight, w(f), of a kRDF f is defined as w(f) = ∑ v∈V (G) |f(v)|. The minimum weight of a kRDF of G is called the k-rainbow domination number of G, and is denoted by ...

Journal: :Discussiones Mathematicae Graph Theory 2018

Journal: :Open Journal of Discrete Mathematics 2019

2009
Ermelinda DeLaViña Craig E. Larson Ryan Pepper Bill Waller

The total domination number of a simple, undirected graph G is the minimum cardinality of a subset D of the vertices of G such that each vertex of G is adjacent to some vertex in D. In 2007 Graffiti.pc, a program that makes graph theoretical conjectures, was used to generate conjectures on the total domination number of connected graphs. More recently, the program was used to generate conjectur...

نمودار تعداد نتایج جستجو در هر سال

با کلیک روی نمودار نتایج را به سال انتشار فیلتر کنید