نتایج جستجو برای: uniformly convex function
تعداد نتایج: 1277050 فیلتر نتایج به سال:
This paper is concerned with the problem of best weighted simultaneous approximations to totally bounded sequences in Banach spaces. Characterization results from convex sets in Banach spaces are established under the assumption that the Banach space is uniformly smooth.
The purpose of this paper is to establish some weak convergence theorems of modified two-step iteration process with errors for two asymptotically quasi-nonexpansive non-self mappings in the setting of real uniformly convex Banach spaces if E satisfies Opial’s condition or the dual E∗ of E has the Kedec-Klee property. Our results extend and improve some known corresponding results from the exis...
In this paper, we introduce a new class of functions which are analytic and univalent with negative coefficients defined by using a certain fractional calculus and fractional calculus integral operators. Characterization property,the results on modified Hadamard product and integrals transforms are discussed. Further, distortion theorem and radii of starlikeness and convexity are also determine...
Abstract. In this paper, we introduce a new class of functions which are analytic and univalent with negative coefficients defined by using certain fractional operators descibed in the Caputo sense. Characterization property, the results on modified Hadamard product and integral transforms are discussed. Further, distortion theorem and radii of starlikeness and convexity are also determined here.
The implicit midpoint rule (IMR) for nonexpansive mappings is established in Banach spaces. The IMR generates a sequence by an implicit algorithm. Weak convergence of this algorithm is proved in a uniformly convex Banach space which either satisfies Opial’s property or has a Fréchet differentiable norm. Consequently, this algorithm applies in both `p and Lp for 1 < p < ∞.
We prove path convergence theorems and introduce a new iterative sequence for a countably infinite family of m-accretive mappings and prove strong convergence of the sequence to a common zero of these operators in uniformly convex real Banach space. Consequently, we obtain strong convergence theorems for a countably infinite family of pseudocontractive mappings. Our theorems extend and improve ...
*Correspondence: [email protected] 3Department of Mathematics, GDCW, Bosan Road, Multan, Pakistan Full list of author information is available at the end of the article Abstract In this paper, we first introduce a cyclic generalized contraction map in metric spaces and give an existence result for a best proximity point of such mappings in the setting of a uniformly convex Banach space. Then we...
Several interesting classes of k-uniformly close-to-convex functions and k-uniformly quasi-convex functions are defined here by using the DziokSrivastava operator. We provide necessary and sufficient coefficient conditions, extreme points, integral representations, and distortion bounds for functions belonging to each of these classes of k-uniformly close-to-convex functions and k-uniformly qua...
Abstract We are concerned about improvements of the modulus convexity by renormings a super-reflexive Banach space. Typically optimal results beyond Pisier's power functions bounds t p , with ≥ 2 and they related to notion generalized cotype. obtain an explicit upper bound for all moduli equivalent we show that if this is best possible, then space admits renorming type 2. UMD bigger, up multipl...
We study the computational difficulty of the problem of finding fixed points of nonexpansive mappings in uniformly convex Banach spaces. We show that the fixed point sets of computable nonexpansive self-maps of a nonempty, computably weakly closed, convex and bounded subset of a computable real Hilbert space are precisely the nonempty, co-r.e. weakly closed, convex subsets of the domain. A unif...
نمودار تعداد نتایج جستجو در هر سال
با کلیک روی نمودار نتایج را به سال انتشار فیلتر کنید