نتایج جستجو برای: undulatory extinction
تعداد نتایج: 27447 فیلتر نتایج به سال:
Locomotion is widely observed in life at micrometric scales and is exhibited by many eukaryotic unicellular organisms. Motility of such organisms can be achieved through periodic deformations of a tail-like projection called the eukaryotic flagellum. Although the mechanism allowing the flagellum to deform is largely understood, questions related to the functional significance of the observed be...
South American electric knifefish are a leading model system within neurobiology. Recent efforts have focused on understanding their biomechanics and relating this to their neural processing strategies. Knifefish swim by means of an undulatory fin that runs most of the length of their body, affixed to the belly. Propelling themselves with this fin enables them to keep their body relatively stra...
Most previous studies of snake feeding mechanisms have focused on the functional morphology of the highly specialized ophidian jaw apparatus. Although some of these studies have included observations of post-cranial movements during feeding, the functional roles of these movements have remained poorly understood. In this study, we used x-ray videography to examine post-cranial prey transport me...
Two forms of undulatory locomotion in the lamprey (a lower vertebrate) have been described earlier: fast forward swimming (FFS) used for long distance migrations and slow backward swimming (SBS) used for escape from adverse tactile stimuli. In the present study, we describe another form of escape behavior: slow forward swimming (SFS). We characterize the kinematic and electromyographic patterns...
The lateral line system detects water flow, which allows fish to orient their swimming with respect to hydrodynamic cues. However, it is unclear whether this sense plays a role in the control of propulsion. Hydrodynamic theory suggests that fish could reduce drag by coordinating the motion of the head relative to detected flow signals. To test this hypothesis, we performed measurements of undul...
To navigate different environments, an animal must be able to adapt its locomotory gait to its physical surroundings. The nematode Caenorhabditis elegans, between swimming in water and crawling on surfaces, adapts its locomotory gait to surroundings that impose approximately 10,000-fold differences in mechanical resistance. Here we investigate this feat by studying the undulatory movements of C...
Introduction: The 23 km diameter and ~39 Ma Haughton impact structure, located on Devon Island, Canada, was formed in Cambrian to Silurian sedimentary rocks and Precambrian crystalline basement gneissic rocks [1]. Previous studies show that Haughton sandstones (" Hs ") have undergone melting at low pressures (<20 GPa; [2]). However, even though the presence of planar deformation features (PDFs)...
نمودار تعداد نتایج جستجو در هر سال
با کلیک روی نمودار نتایج را به سال انتشار فیلتر کنید