نتایج جستجو برای: the individual ergodic theorem

تعداد نتایج: 16096978  

Journal: :Discrete & Computational Geometry 2001
D. Damanik D. Lenz

This paper is concerned with the concept of linear repetitivity in the theory of tilings. We prove a general uniform subadditive ergodic theorem for linearly repetitive tilings. This theorem unifies and extends various known (sub)additive ergodic theorems on tilings. The results of this paper can be applied in the study of both random operators and lattice gas models on tilings.

2004
Michael Keane Karl Petersen

We give a short proof of a strengthening of the Maximal Ergodic Theorem which also immediately yields the Pointwise Ergodic Theorem. Let (X,B, μ) be a probability space, T : X → X a (possibly noninvertible) measurepreserving transformation, and f ∈ L(X,B, μ). Let

Journal: :bulletin of the iranian mathematical society 2011
f. rezakhanlou

a random walk on a lattice is one of the most fundamental models in probability theory. when the random walk is inhomogenous and its inhomogeniety comes from an ergodic stationary process, the walk is called a random walk in a random environment (rwre). the basic questions such as the law of large numbers (lln), the central limit theorem (clt), and the large deviation principle (ldp) are no...

2010
MEIRONG ZHANG ZHE ZHOU MING LI M. LI

By exploiting the Denjoy theorem in topological dynamics and the unique ergodic theorem in ergodic theory, we will give a classification of all solutions of asymmetric p-Laplacian oscillators with periodic coefficients. AMS (MOS) Subject Classification. Primary: 34D08; Secondary: 37E10, 37A25.

2008
Patrick LaVictoire

This is an earlier, but more general, version of ”An L Ergodic Theorem for Sparse Random Subsequences”. We prove an L ergodic theorem for averages defined by independent random selector variables, in a setting of general measure-preserving group actions. A far more readable version of this paper is in the works.

Journal: :CoRR 2014
Vladimir V. V'yugin

We study a stability property of probability laws with respect to small violations of algorithmic randomness. A sufficient condition of stability is presented in terms of Schnorr tests of algorithmic randomness. Most probability laws, like the strong law of large numbers, the law of iterated logarithm, and even Birkhoff’s pointwise ergodic theorem for ergodic transformations, are stable in this...

2008
Tim Austin

We offer a proof of the following nonconventional ergodic theorem: Theorem. If Ti : Z y (X,Σ, μ) for i = 1, 2, . . . , d are commuting probability-preserving Z-actions, (IN )N≥1 is a Følner sequence of subsets of Z, (aN )N≥1 is a base-point sequence in Z and f1, f2, . . . , fd ∈ L∞(μ) then the nonconventional ergodic averages

2008
ANDERS KARLSSON NICOLAS MONOD

It is observed that a wellnigh trivial application of the ergodic theorem from [3] yields a strong LLN for arbitrary concave moments. Not for publication: we found that Aaronson–Weiss essentially proved Theorem 1, see J. Aaronson, An introduction to infinite ergodic theory (AMS Math. Surv. Mon. 50, 1997), pages 65–66.

پایان نامه :وزارت علوم، تحقیقات و فناوری - دانشگاه ولی عصر (عج) - رفسنجان - دانشکده ریاضی 1389

in this thesis, first the notion of weak mutual associativity (w.m.a.) and the necessary and sufficient condition for a $(l,gamma)$-associated hypersemigroup $(h, ast)$ derived from some family of $lesssim$-preordered semigroups to be a hypergroup, are given. second, by proving the fact that the concrete categories, semihypergroups and hypergroups have not free objects we will introduce t...

نمودار تعداد نتایج جستجو در هر سال

با کلیک روی نمودار نتایج را به سال انتشار فیلتر کنید