Let G be a graph and f : V (G) → {1, 2, 3, . . . , p+ q} be an injection. For each edge e = uv and an integer m ≥ 2, the induced Smarandachely edge m-labeling f∗ S is defined by f ∗ S(e) = ⌈ f(u) + f(v) m ⌉ . Then f is called a Smarandachely super m-mean labeling if f(V (G))∪ {f∗(e) : e ∈ E(G)} = {1, 2, 3, . . . , p+ q}. Particularly, in the case of m = 2, we know that f ∗(e) = f(u)+f(v) ...