Abstract We consider stochastic differential equations of the form $dX_t = |f(X_t)|/t^{\gamma} dt+1/t^{\gamma} dB_t$ , where f ( x ) behaves comparably to $|x|^k$ in a neighborhood origin, for $k\in [1,\infty)$ . show that there exists threshold value $ \,{:}\,{\raise-1.5pt{=}}\, \tilde{\gamma}$ $\gamma$ depending on k such if $\gamma \in (1/2, \tilde{\gamma})$ then $\mathbb{P}(X_t\rightarrow 0...