نتایج جستجو برای: stage sampling

تعداد نتایج: 556046  

1998
Steven N. MacEachern Merlise Clyde Jun S. Liu Steve MacEachern

There are two generations of Gibbs sampling methods for semi-parametric models involving the Dirichlet process. The rst generation suuered from a severe drawback; namely that the locations of the clusters, or groups of parameters, could essentially become xed, moving only rarely. Two strategies that have been proposed to create the second generation of Gibbs samplers are integration and appendi...

پایان نامه :وزارت علوم، تحقیقات و فناوری - دانشگاه تبریز - دانشکده فنی 1386

چکیده ندارد.

Journal: :CoRR 2017
Yue Li Dong Liu Houqiang Li Li Li Feng Wu

Inspired by the recent advances of image superresolution using convolutional neural network (CNN), we propose a CNN-based block up-sampling scheme for intra frame coding. A block can be down-sampled before being compressed by normal intra coding, and then up-sampled to its original resolution. Different from previous studies on down/up-sampling based coding, the up-sampling interpolation filter...

2008
Stephanie S. Porter Ginny L. Eckert Carrie J. Byron Jennifer L. Fisher

We compared the effectiveness of light traps and plankton tows for sampling brachyuran crab larvae in Bartlett Cove, Glacier Bay, Alaska, U.S.A. during three nights each in July and August 2001 and June, August, and September 2002. Proportions of species and stages were used to compare larvae caught by light traps and plankton tows. Absolute numbers of larvae are difficult to compare because of...

Journal: :Biostatistics 2011
Haibo Zhou Yuanshan Wu Yanyan Liu Jianwen Cai

Two-stage design has long been recognized to be a cost-effective way for conducting biomedical studies. In many trials, auxiliary covariate information may also be available, and it is of interest to exploit these auxiliary data to improve the efficiency of inferences. In this paper, we propose a 2-stage design with continuous outcome where the second-stage data is sampled with an "outcome-auxi...

Journal: :Computational Statistics & Data Analysis 2006
Hubert J. Chen Miin-Jye Wen

A two-stage sampling procedure for obtaining an optimal confidence interval for the largest or smallest mean of k independent normal populations is proposed, where the population variances are unknown and possibly unequal. The optimal confidence interval is obtained by maximizing the coverage probability with a fixed width at a least favorable configuration of means. Then, the sample sizes can ...

Journal: :Medical image analysis 2007
Mika Seppä

This paper introduces a simple method of two-stage resampling where Fourier-domain up-sampling is followed by traditional resampling. Practical aspects as well as efficient implementation techniques are considered. A new version of pruned FFT algorithms to calculate the up-sampling stage is also introduced. The suggested two-stage resampling method provides very high-quality results exceeding t...

2001
H. Aboushady

H. Aboushady, Y. Dumonteix, M. M. Louërat and H. Mehrez Université Paris VI, Laboratoire LIP6/ASIM 4, Place Jussieu, 75252 Paris Cedex 05, France Email: Hassan.Aboushady@lip6.fr , Yannick.Dumonteix@lip6.fr Abstract—A power efficient multi-rate multi-stage Comb decimation filter for mono-bit and multi-bit A/D converters is presented. Polyphase decomposition in all stages, with high decimation fa...

2017
J. A. Segovia F. Medeiro A. González A. Villegas A. Rodríguez-Vázquez

This paper reports a CIS readout channel conceived for half-electron noise by combining semi-empirical pixel noise model fitting, S&H-free two-stage ADC with over-sampling, optimized pixel control and Correlated Multiple Sampling (CMS). The ADC architecture consists of a first-order  modulator that generate the MSBs followed by a ramp converter. Closed loop self correction is employed for low...

Journal: :Neural computation 2000
Masashi Sugiyama Hidemitsu Ogawa

The problem of designing input signals for optimal generalization is called active learning. In this article, we give a two-stage sampling scheme for reducing both the bias and variance, and based on this scheme, we propose two active learning methods. One is the multipoint search method applicable to arbitrary models. The effectiveness of this method is shown through computer simulations. The ...

نمودار تعداد نتایج جستجو در هر سال

با کلیک روی نمودار نتایج را به سال انتشار فیلتر کنید

function paginate(evt) { url=/search_year_filter/ var term=document.getElementById("search_meta_data").dataset.term pg=parseInt(evt.target.text) var data={ "year":filter_year, "term":term, "pgn":pg } filtered_res=post_and_fetch(data,url) window.scrollTo(0,0); } function update_search_meta(search_meta) { meta_place=document.getElementById("search_meta_data") term=search_meta.term active_pgn=search_meta.pgn num_res=search_meta.num_res num_pages=search_meta.num_pages year=search_meta.year meta_place.dataset.term=term meta_place.dataset.page=active_pgn meta_place.dataset.num_res=num_res meta_place.dataset.num_pages=num_pages meta_place.dataset.year=year document.getElementById("num_result_place").innerHTML=num_res if (year !== "unfilter"){ document.getElementById("year_filter_label").style="display:inline;" document.getElementById("year_filter_place").innerHTML=year }else { document.getElementById("year_filter_label").style="display:none;" document.getElementById("year_filter_place").innerHTML="" } } function update_pagination() { search_meta_place=document.getElementById('search_meta_data') num_pages=search_meta_place.dataset.num_pages; active_pgn=parseInt(search_meta_place.dataset.page); document.getElementById("pgn-ul").innerHTML=""; pgn_html=""; for (i = 1; i <= num_pages; i++){ if (i===active_pgn){ actv="active" }else {actv=""} pgn_li="
  • " +i+ "
  • "; pgn_html+=pgn_li; } document.getElementById("pgn-ul").innerHTML=pgn_html var pgn_links = document.querySelectorAll('.mypgn'); pgn_links.forEach(function(pgn_link) { pgn_link.addEventListener('click', paginate) }) } function post_and_fetch(data,url) { showLoading() xhr = new XMLHttpRequest(); xhr.open('POST', url, true); xhr.setRequestHeader('Content-Type', 'application/json; charset=UTF-8'); xhr.onreadystatechange = function() { if (xhr.readyState === 4 && xhr.status === 200) { var resp = xhr.responseText; resp_json=JSON.parse(resp) resp_place = document.getElementById("search_result_div") resp_place.innerHTML = resp_json['results'] search_meta = resp_json['meta'] update_search_meta(search_meta) update_pagination() hideLoading() } }; xhr.send(JSON.stringify(data)); } function unfilter() { url=/search_year_filter/ var term=document.getElementById("search_meta_data").dataset.term var data={ "year":"unfilter", "term":term, "pgn":1 } filtered_res=post_and_fetch(data,url) } function deactivate_all_bars(){ var yrchart = document.querySelectorAll('.ct-bar'); yrchart.forEach(function(bar) { bar.dataset.active = false bar.style = "stroke:#71a3c5;" }) } year_chart.on("created", function() { var yrchart = document.querySelectorAll('.ct-bar'); yrchart.forEach(function(check) { check.addEventListener('click', checkIndex); }) }); function checkIndex(event) { var yrchart = document.querySelectorAll('.ct-bar'); var year_bar = event.target if (year_bar.dataset.active == "true") { unfilter_res = unfilter() year_bar.dataset.active = false year_bar.style = "stroke:#1d2b3699;" } else { deactivate_all_bars() year_bar.dataset.active = true year_bar.style = "stroke:#e56f6f;" filter_year = chart_data['labels'][Array.from(yrchart).indexOf(year_bar)] url=/search_year_filter/ var term=document.getElementById("search_meta_data").dataset.term var data={ "year":filter_year, "term":term, "pgn":1 } filtered_res=post_and_fetch(data,url) } } function showLoading() { document.getElementById("loading").style.display = "block"; setTimeout(hideLoading, 10000); // 10 seconds } function hideLoading() { document.getElementById("loading").style.display = "none"; } -->