Let $$G = K_{n_1,n_2,\cdots ,n_t}$$ be a complete t-partite graph on $$n=\sum _{i=1}^t n_i$$ vertices. The distance between vertices i and j in G, denoted by $$d_{ij}$$ is defined to the length of shortest path j. squared matrix $$\Delta (G)$$ G $$n\times n$$ with $$(i,j)^{th}$$ entry equal 0 if $$i j$$ $$d_{ij}^2$$ \ne . We define energy $$E_{\Delta }(G)$$ sum absolute values its eigenvalues. ...