نتایج جستجو برای: speech in noise
تعداد نتایج: 17020750 فیلتر نتایج به سال:
In speech recognition, a speech/non-speech detection must be robust to noise. In this work, a new method for speech/nonspeech detection using a Linear Discriminant Analysis (LDA) applied to Mel Frequency Cepstrum Coefficients (MFCC) is presented. The energy is the most discriminant parameter between noise and speech. But with this single parameter, the speech/non-speech detection system detects...
در این پروژه مقاوم سازی بازشناسی گفتار در محیط های نویزی بر مبنای پردازش زیرباندی بررسی شده است. مقاوم سازی بازشناسی گفتار یکی از مسائل مهم در این حوزه می باشد که کار بر روی ان همچنان ادامه دارد. از روش های گوناگونی به منظور تحقق یافتن این مهم استفاده می شود و ایده های متنوعی نیز در مقالات و تحقیقات ارائه می گردند. عیب عمده اکثر روشهای پیشهاد شده پیچیدگی زیاد و سرعت کم الگوریتم های آن است. ما د...
A challenging, unsolved problem in the speech recognition community is recognizing speech signals that are corrupted by loud, highly nonstationary noise. One approach to noisy speech recognition is to automatically remove the noise from the cepstrum sequence before feeding it in to a clean speech recognizer. In previous work published in Eurospeech, we showed how a probability model trained on ...
This paper presents a speech enhancement method for noise robust front-end and speech reconstruction at the back-end of Distributed Speech Recognition (DSR). The speech noise removal algorithm is based on a two stage noise filtering LSAHT by log spectral amplitude speech estimator (LSA) and harmonic tunneling (HT) prior to feature extraction. The noise reduced features are transmitted with some...
This study investigated the extent to which noise impacts normal-hearing young adults' speech processing of sentences that vary in intelligibility. Intelligibility and recognition memory in noise were examined for conversational and clear speech sentences recorded in quiet (quiet speech, QS) and in response to the environmental noise (noise-adapted speech, NAS). Results showed that (1) increase...
The QUT-NOISE-TIMIT corpus consists of 600 hours of noisy speech sequences designed to enable a thorough evaluation of voice activity detection (VAD) algorithms across a wide variety of common background noise scenarios. In order to construct the final mixed-speech database, a collection of over 10 hours of background noise was conducted across 10 unique locations covering 5 common noise scenar...
نمودار تعداد نتایج جستجو در هر سال
با کلیک روی نمودار نتایج را به سال انتشار فیلتر کنید