نتایج جستجو برای: spectral norm

تعداد نتایج: 207272  

2008
MICHAEL KAROW Eugene Gutkin Edmond Jonckheere Michael Karow Diederich Hinrichsen Anthony J. Pritchard Daniel Kressner Francoise Tisseur M. KAROW

where B ∈ C, C ∈ C are fixed matrices and ∆ is an element of a subset ∆ of C. It is assumed that ∆ is closed, connected and contains the zero matrix. The size of a perturbation ∆ ∈ ∆ is measured by a norm ‖ · ‖ on C. (a) The structued pseudospectrum (also called spectral value set) of the triple (A,B,C) with respect to the perturbation class ∆, the underlying norm ‖ · ‖ and the perturbation lev...

2018
Behnam Neyshabur Srinadh Bhojanapalli Nathan Srebro

We present a generalization bound for feedforward neural networks with ReLU activations in terms of the product of the spectral norm of the layers and the Frobenius norm of the weights. The key ingredient is a bound on the changes in the output of a network with respect to perturbation of its weights, thereby bounding the sharpness of the network. We combine this perturbation bound with the PAC...

2015
Michael Mahoney

Today, we will continue with our discussion of scalar and matrix concentration, with a discussion of the matrix analogues of Markov’s, Chebychev’s, and Chernoff’s Inequalities. Then, we will return to bounding the error for our approximating matrix multiplication algorithm. We will start with using Hoeffding-Azuma bounds from last class to get improved Frobenius norm bounds, and then (next time...

2009
Eli Stein WILLIAM BECKNER

Abstract. Sharp error estimates in terms of the fractional Laplacian and a weighted Besov norm are obtained for Pitt’s inequality by using the spectral representation with weights for the fractional Laplacian due to Frank, Lieb and Seiringer and the sharp Stein-Weiss inequality. Dilation invariance, group symmetry on a non-unimodular group and a nonlinear Stein-Weiss lemma are used to provide s...

2017
Olga Klopp Yu Lu Alexandre B. Tsybakov Harrison H. Zhou Yale

We study the problem of matrix estimation and matrix completion under a general framework. This framework includes several important models as special cases such as the gaussian mixture model, mixed membership model, bi-clustering model and dictionary learning. We consider the optimal convergence rates in a minimax sense for estimation of the signal matrix under the Frobenius norm and under the...

Journal: :CoRR 2017
Francesca Parise Asuman E. Ozdaglar

We provide a unified variational inequality framework for the study of fundamental properties of the Nash equilibrium in network games. We identify several conditions on the underlying network (in terms of spectral norm, infinity norm and minimum eigenvalue of its adjacency matrix) that guarantee existence, uniqueness, convergence and continuity of equilibrium in general network games with mult...

2009
SAM ELLIOTT

We use induction and interpolation techniques to prove that a composition operator induced by a map φ is bounded on the weighted Bergman space Aα(H) of the right half-plane if and only if φ fixes ∞ non-tangentially, and has a finite angular derivative λ there. We further prove that in this case the norm, essential norm, and spectral radius of the operator are all equal, and given by λ.

Journal: :CoRR 2012
Pierre Vuillemin Charles Poussot-Vassal Daniel Alazard

In this paper, a new simple but yet efficient spectral expression of the frequency-limited H2-norm, denoted H2,ω-norm, is introduced. The proposed new formulation requires the computation of the system eigenvalues and eigenvectors only, and provides thus an alternative to the well established Gramian-based approach. The interest of this new formulation is in three-folds: (i) it provides a new t...

پایان نامه :وزارت علوم، تحقیقات و فناوری - دانشگاه لرستان - دانشکده علوم پایه 1392

‎in this article‎, ‎we have focused one some basic and productive information about the properties of spectrum and singular values related to compact operators which are ideals in a c*-algebra of bounded operators‎. ‎considering a two-sided connection between the family of symmetric gauge functions on sequence of singular values of compact operators and symmetric norms on finite dimensional ope...

2016
KENNETH R. DAVIDSON VERN I. PAULSEN HUGO J. WOERDEMAN

We define the complete numerical radius norm for homomorphisms from any operator algebra into B(H), and show that this norm can be computed explicitly in terms of the completely bounded norm. This is used to show that if K is a complete Cspectral set for an operator T , then it is a complete M -numerical radius set, where M = 12 (C + C −1). In particular, in view of Crouzeix’s theorem, there is...

نمودار تعداد نتایج جستجو در هر سال

با کلیک روی نمودار نتایج را به سال انتشار فیلتر کنید