نتایج جستجو برای: signed total roman k domination
تعداد نتایج: 1181862 فیلتر نتایج به سال:
For any integer $kgeq 1$, a set $S$ of vertices in a graph $G=(V,E)$ is a $k$-tuple total dominating set of $G$ if any vertex of $G$ is adjacent to at least $k$ vertices in $S$, and any vertex of $V-S$ is adjacent to at least $k$ vertices in $V-S$. The minimum number of vertices of such a set in $G$ we call the $k$-tuple total restrained domination number of $G$. The maximum num...
A double Roman dominating function on a graph G=(V,E) is f:V?{0,1,2,3}, satisfying the condition that every vertex u for which f(u)=1 adjacent to at least one assigned 2 or 3, and with f(u)=0 3 two vertices 2. The weight of f equals sum w(f)=?v?Vf(v). minimum G called domination number ?dR(G) G. We obtain tight bounds in some cases closed expressions generalized Petersen graphs P(ck,k). In shor...
Recent articles by ReVelle [20, 21] in the Johns Hopkins Magazines suggested a new variation of domination called Roman domination, see also [22] for an integer programming formulation of the problem. Since then, there have been several articles on Roman domination and its variations [2, 3, 4, 5, 6, 11, 12, 14, 15, 16, 18, 24, 23, 25]. Emperor Constantine had the requirement that an army or leg...
For a fixed positive integer k, a k-tuple total dominating set of a graph G is a subset D ⊆ V (G) such that every vertex of G is adjacent to at least k vertices in D. The k-tuple total domination problem is to determine a minimum k-tuple total dominating set of G. This paper studies k-tuple total domination from an algorithmic point of view. In particular, we present a linear-time algorithm for...
For a graph property P and a graph G, a subset S of the vertices of G is a P-set if the subgraph induced by S has the property P. A P-Roman dominating function on a graph G is a labeling f : V (G) → {0, 1, 2} such that every vertex with label 0 has a neighbor with label 2 and the set of all vertices with label 1 or 2 is a P-set. The P-Roman domination number γPR(G) of G is the minimum of Σv∈V (...
Given two graphs G1 and G2, the Kronecker product G1 ⊗G2 of G1 and G2 is a graph which has vertex set V (G1⊗G2) = V (G1)×V (G2) and edge set E(G1 ⊗ G2) = {(u1, v1)(u2, v2) : u1u2 ∈ E(G1) and v1v2 ∈ E(G2)}. ∗ Research was partially supported by the National Nature Science Foundation of China (No. 11171207) and the Key Programs of Wuxi City College of Vocational Technology (WXCY2012-GZ-007). † Co...
The open neighborhood NG(e) of an edge e in a graph G is the set consisting of all edges having a common end-vertex with e and its closed neighborhood is NG[e] = NG(e) ∪ {e}. Let f be a function on E(G), the edge set of G, into the set {−1, 1}. If ∑x∈NG[e] f(x) ≥ 1 for at least a half of the edges e ∈ E(G), then f is called a signed edge majority dominating function of G. The minimum of the val...
For the terminology and notations not defined here, we adopt those in Bondy and Murty [1] and Xu [2] and consider simple graphs only. Let G = (V,E) be a graph with vertex set V = V (G) and edge set E = E(G). For any vertex v ∈ V , NG(v) denotes the open neighborhood of v in G and NG[v] = NG(v) ∪ {v} the closed one. dG(v) = |NG(v)| is called the degree of v in G, ∆ and δ denote the maximum degre...
نمودار تعداد نتایج جستجو در هر سال
با کلیک روی نمودار نتایج را به سال انتشار فیلتر کنید