نتایج جستجو برای: signed roman domination

تعداد نتایج: 35264  

Journal: :International Journal of Computer Mathematics 2008

Journal: :International Journal of Research in Engineering and Technology 2013

Journal: :Symmetry 2021

Let G be a graph with no isolated vertex and let N(v) the open neighbourhood of v∈V(G). f:V(G)→{0,1,2} function Vi={v∈V(G):f(v)=i} for every i∈{0,1,2}. We say that f is strongly total Roman dominating on if subgraph induced by V1∪V2 has N(v)∩V2≠∅ v∈V(G)\V2. The domination number G, denoted γtRs(G), defined as minimum weight ω(f)=∑x∈V(G)f(x) among all functions G. This paper devoted to study it ...

A total Roman dominating function on a graph $G$ is a function $f: V(G) rightarrow {0,1,2}$ such that for every vertex $vin V(G)$ with $f(v)=0$ there exists a vertex $uin V(G)$ adjacent to $v$ with $f(u)=2$, and the subgraph induced by the set ${xin V(G): f(x)geq 1}$ has no isolated vertices. The total Roman domination number of $G$, denoted $gamma_{tR}(G)$, is the minimum weight $omega(f)=sum_...

Journal: :Australasian J. Combinatorics 2004
Laura M. Harris Johannes H. Hattingh

A two-valued function f defined on the vertices of a graph G = (V,E), f : V → {−1, 1}, is a signed total dominating function if the sum of its function values over any open neighborhood is at least one. That is, for every v ∈ V, f(N(v)) ≥ 1, where N(v) consists of every vertex adjacent to v. The weight of a total signed dominating function is f(V ) = ∑ f(v), over all vertices v ∈ V . The total ...

Journal: :Journal of Combinatorial Theory, Series B 1999

2010
S. M. Sheikholeslami L. Volkmann

Let k ≥ 1 be an integer, and let D = (V, A) be a finite and simple digraph in which dD(v) ≥ k for all v ∈ V . A function f : V −→ {−1, 1} is called a signed total k-dominating function (STkDF) if f(N−(v)) ≥ k for each vertex v ∈ V . The weight w(f) of f is defined by w(f) = ∑ v∈V f(v). The signed total k-domination number for a digraph D is γ kS(D) = min{w(f) | f is a STkDF of D}. In this paper...

Journal: :Discussiones Mathematicae Graph Theory 2011
Lutz Volkmann

Let D be a finite and simple digraph with the vertex set V (D), and let f : V (D) → {−1, 1} be a two-valued function. If∑ x∈N[v] f(x) ≥ 1 for each v ∈ V (D), where N[v] consists of v and all vertices of D from which arcs go into v, then f is a signed dominating function on D. The sum f(V (D)) is called the weight w(f) of f . The minimum of weights w(f), taken over all signed dominating function...

Journal: :Annals of Pure and Applied Mathematics 2018

نمودار تعداد نتایج جستجو در هر سال

با کلیک روی نمودار نتایج را به سال انتشار فیلتر کنید