نتایج جستجو برای: seidel signless laplacian eigenvalues
تعداد نتایج: 31915 فیلتر نتایج به سال:
Eigenvalues of a graph are the eigenvalues of its adjacency matrix. The multiset of eigenvalues is called its spectrum. There are many properties which can be explained using the spectrum like energy, connectedness, vertex connectivity, chromatic number, perfect matching etc. Laplacian spectrum is the multiset of eigenvalues of Laplacian matrix. The Laplacian energy of a graph is the sum of the...
Let G be a mixed graph and L(G) be the Laplacian matrix of G. In this paper, the coefficients of the Laplacian characteristic polynomial of G are studied. The first derivative of the characteristic polynomial of L(G) is explicitly expressed by means of Laplacian characteristic polynomials of its edge deleted subgraphs. As a consequence, it is shown that the Laplacian characteristic polynomial o...
We introduce the Laplacian sum-eccentricity matrix LS_e} of a graph G, and its Laplacian sum-eccentricity energy LS_eE=sum_{i=1}^n |eta_i|, where eta_i=zeta_i-frac{2m}{n} and where zeta_1,zeta_2,ldots,zeta_n are the eigenvalues of LS_e}. Upper bounds for LS_eE are obtained. A graph is said to be twinenergetic if sum_{i=1}^n |eta_i|=sum_{i=1}^n |zeta_i|. Conditions ...
In this paper, we show that the largest signless Laplacian H-eigenvalue of a connected k-uniform hypergraph G, where k ≥ 3, reaches its upper bound 2∆(G), where ∆(G) is the largest degree of G, if and only if G is regular. Thus the largest Laplacian H-eigenvalue of G, reaches the same upper bound, if and only if G is regular and oddbipartite. We show that an s-cycle G, as a k-uniform hypergraph...
نمودار تعداد نتایج جستجو در هر سال
با کلیک روی نمودار نتایج را به سال انتشار فیلتر کنید