نتایج جستجو برای: routh array

تعداد نتایج: 134354  

Journal: :Journal of physics 2021

Abstract SEIR compartmental model for COVID-19 pandemic (SEIR_COVID) with exposed group is proposed and analysed in this paper. The steady state of determined to control the pandemic. Zero Disease equilibrium are presented SEIR_COVID model. In each case, prints locally asymptotically stable under certain conditions. Routh-Hurwitz criteria used study stability COVID-19. This showed that using wi...

Journal: :Discrete Mathematics 2012
Jean-Yves Enjalbert Hoang Ngoc Minh

= ∑ n1>...>nr>0 q11 . . . qirnrn1 1 . . . n −sr r , with q a root of unit and i = (i1, . . . , ir) a composition. These sums converge when s1 > 1. To study simultaneously these families of polyzêtas, the colored Hurwitz polyzêtas, for a composition s = (s1, . . . , sr) and a tuple of complex numbers ξ = (ξ1, . . . , ξr) and a tuple of parameters in ]−∞; 1[, t = (t1, . . . , tr), are defined by [6]

2009
TYLER J. JARVIS TAKASHI KIMURA T. KIMURA

We provide a formula describing the G-module structure of the Hurwitz-Hodge bundle for admissible G-covers in terms of the Hodge bundle of the base curve, and more generally, for describing the G-module structure of the push-forward to the base of any sheaf on a family of admissible G-covers. This formula can be interpreted as a representation-ringvalued relative Riemann-Hurwitz formula for fam...

Journal: :Journal of Approximation Theory 2005
Dimitar K. Dimitrov Juan Manuel Peña

We establish sufficient conditions for a matrix to be almost totally positive, thus extending a result of Craven and Csordas who proved that the corresponding conditions guarantee that a matrix is strictly totally positive. Then we apply our main result in order to obtain a new criteria for a real algebraic polynomial to be a Hurwitz one. The properties of the corresponding “extremal” Hurwitz p...

Journal: :Electr. J. Comb. 2009
Charmaine Sia

Let D2N be the dihedral group of order 2N , Dic4M the dicyclic group of order 4M , SD2m the semidihedral group of order 2 m, and M2m the group of order 2 m with presentation M2m = 〈α, β | α 2m−1 = β2 = 1, βαβ−1 = α2 m−2+1〉. We classify the orbits in Dn 2N , Dic n 4M , SD n 2m , and M n 2m under the Hurwitz action.

2007

In defining a special type of group, such as commutative group or finite group, one may be content to add a suitable postulate, or possibly a number of postulates, describing the special property under consideration, to any set of postulates for a general group. I t is, however, of interest to pursue the matter further, to determine whether a simplified set of postulates can be set up which wil...

1999
Sameer M. Jalnapurkar Jerrold E. Marsden

This paper builds on the initial work of Marsden and Scheurle on nonabelian Routh reduction. The main objective of the present paper is to carry out the reduction of variational principles in further detail. In particular, we obtain reduced variational principles which are the symplectic analogue of the well known reduced variational principles for the Euler{Poincar e equations and the Lagrange...

2017
Hui Miao Xamxinur Abdurahman Zhidong Teng Chengjun Kang

A fractional order HIV model with both virus-tocell and cell-to-cell transmissions and therapy effect is investigated. The conditions for the existence of the equilibria are determined. Local stability analysis of the HIV model is studied by using the fractional Routh-Hurwitz stability conditions. We have generalized the integer LaSalle’s invariant theorem into fractional system and given some ...

2018
JUAN DAVILA

A classical problem for the two-dimensional Euler flow for an incompressible fluid confined to a smooth domain. is that of finding regular solutions with highly concentrated vorticities around N moving vortices. The formal dynamic law for such objects was first derived in the 19th century by Kirkhoff and Routh. In this paper we devise a gluing approach for the construction of smooth N-vortex so...

Journal: :ISA transactions 2013
Ryo Tanaka Hiroki Shibasaki Hiromitsu Ogawa Takahiro Murakami Yoshihisa Ishida

This study explains and demonstrates the design method for a control system with a load disturbance observer. Observer gains are determined by linear programming (LP) in terms of the Routh-Hurwitz stability criterion and the final-value theorem. In addition, the control model has a feedback structure, and feedback gains are determined to be the linear quadratic regulator. The simulation results...

نمودار تعداد نتایج جستجو در هر سال

با کلیک روی نمودار نتایج را به سال انتشار فیلتر کنید

function paginate(evt) { url=/search_year_filter/ var term=document.getElementById("search_meta_data").dataset.term pg=parseInt(evt.target.text) var data={ "year":filter_year, "term":term, "pgn":pg } filtered_res=post_and_fetch(data,url) window.scrollTo(0,0); } function update_search_meta(search_meta) { meta_place=document.getElementById("search_meta_data") term=search_meta.term active_pgn=search_meta.pgn num_res=search_meta.num_res num_pages=search_meta.num_pages year=search_meta.year meta_place.dataset.term=term meta_place.dataset.page=active_pgn meta_place.dataset.num_res=num_res meta_place.dataset.num_pages=num_pages meta_place.dataset.year=year document.getElementById("num_result_place").innerHTML=num_res if (year !== "unfilter"){ document.getElementById("year_filter_label").style="display:inline;" document.getElementById("year_filter_place").innerHTML=year }else { document.getElementById("year_filter_label").style="display:none;" document.getElementById("year_filter_place").innerHTML="" } } function update_pagination() { search_meta_place=document.getElementById('search_meta_data') num_pages=search_meta_place.dataset.num_pages; active_pgn=parseInt(search_meta_place.dataset.page); document.getElementById("pgn-ul").innerHTML=""; pgn_html=""; for (i = 1; i <= num_pages; i++){ if (i===active_pgn){ actv="active" }else {actv=""} pgn_li="
  • " +i+ "
  • "; pgn_html+=pgn_li; } document.getElementById("pgn-ul").innerHTML=pgn_html var pgn_links = document.querySelectorAll('.mypgn'); pgn_links.forEach(function(pgn_link) { pgn_link.addEventListener('click', paginate) }) } function post_and_fetch(data,url) { showLoading() xhr = new XMLHttpRequest(); xhr.open('POST', url, true); xhr.setRequestHeader('Content-Type', 'application/json; charset=UTF-8'); xhr.onreadystatechange = function() { if (xhr.readyState === 4 && xhr.status === 200) { var resp = xhr.responseText; resp_json=JSON.parse(resp) resp_place = document.getElementById("search_result_div") resp_place.innerHTML = resp_json['results'] search_meta = resp_json['meta'] update_search_meta(search_meta) update_pagination() hideLoading() } }; xhr.send(JSON.stringify(data)); } function unfilter() { url=/search_year_filter/ var term=document.getElementById("search_meta_data").dataset.term var data={ "year":"unfilter", "term":term, "pgn":1 } filtered_res=post_and_fetch(data,url) } function deactivate_all_bars(){ var yrchart = document.querySelectorAll('.ct-bar'); yrchart.forEach(function(bar) { bar.dataset.active = false bar.style = "stroke:#71a3c5;" }) } year_chart.on("created", function() { var yrchart = document.querySelectorAll('.ct-bar'); yrchart.forEach(function(check) { check.addEventListener('click', checkIndex); }) }); function checkIndex(event) { var yrchart = document.querySelectorAll('.ct-bar'); var year_bar = event.target if (year_bar.dataset.active == "true") { unfilter_res = unfilter() year_bar.dataset.active = false year_bar.style = "stroke:#1d2b3699;" } else { deactivate_all_bars() year_bar.dataset.active = true year_bar.style = "stroke:#e56f6f;" filter_year = chart_data['labels'][Array.from(yrchart).indexOf(year_bar)] url=/search_year_filter/ var term=document.getElementById("search_meta_data").dataset.term var data={ "year":filter_year, "term":term, "pgn":1 } filtered_res=post_and_fetch(data,url) } } function showLoading() { document.getElementById("loading").style.display = "block"; setTimeout(hideLoading, 10000); // 10 seconds } function hideLoading() { document.getElementById("loading").style.display = "none"; } -->