نتایج جستجو برای: restrained roman dominating function
تعداد نتایج: 1239824 فیلتر نتایج به سال:
A set S ⊆ V (G) is a restrained strong resolving hop dominating in G if for every v ∈ (G)\S, there exists w such that dG(v, w) = 2 and or (G)\S has no isolated vertex. The smallest cardinality of set, denoted by γrsRh(G), called the domination number G. In this paper, we obtained corresponding parameter graphs resulting from join, corona lexicographic product two graphs. Specifically, character...
Domination theory is a well-established topic in graph theory, as well one of the most active research areas. Interest this area partly explained by its diversity applications to real-world problems, such facility location computer and social networks, monitoring communication, coding algorithm design, among others. In last two decades, functions defined on graphs have attracted attention sever...
Let k ≥ 1 be an integer, and let G be a finite and simple graph with vertex set V (G). A signed total Italian k-dominating function (STIkDF) on a graph G is a functionf : V (G) → {−1, 1, 2} satisfying the conditions that $sum_{xin N(v)}f(x)ge k$ for each vertex v ∈ V (G), where N(v) is the neighborhood of $v$, and each vertex u with f(u)=-1 is adjacent to a vertex v with f(v)=2 or to two vertic...
background: considering the negative consequences of using physical restraints, we conducted this study to identify patients who are more frequently restrained in a psychiatric emergency ward as an initial step to limit the use of restraint to the minimum possible. methods: this was a retrospective case control study conducted in iran psychiatric hospital in tehran, iran. we reviewed the files ...
For a graph G=(V,E) with V=V(G) and E=E(G), perfect double Italian dominating function is f:V→{0,1,2,3} having the property that 3≤∑u∈NG[v]f(u)≤4, for every vertex v∈G f(v)∈{0,1}. The weight of f sum f(V)=∑v∈V(G)f(v) minimum on G domination number γdIp(G) G. We initiate study functions. check γdIp some standard graphs evaluate γdI such graphs. functions versus Roman are perused. NP-completeness...
A function f : V (G) → {−1, 0, 1} is a minus dominating function if for every vertex v ∈ V (G), ∑ u∈N [v] f(u) ≥ 1. A minus dominating function f of G is called a global minus dominating function if f is also a minus dominating function of the complement G of G. The global minus domination number γ− g (G) of G is defined as γ − g (G) = min{ ∑ v∈V (G) f(v) | f is a global minus dominating functi...
A double Roman dominating function on a graph G=(V,E) is f:V?{0,1,2,3} with the properties that if f(u)=0, then vertex u adjacent to at least one assigned 3 or two vertices 2, and f(u)=1, 2 3. The weight of f equals w(f)=?v?Vf(v). domination number ?dR(G) G minimum G. said be ?dR(G)=3?(G), where ?(G) We obtain sharp lower bound generalized Petersen graphs P(3k,k), we construct solutions providi...
for any integer $kge 1$, a minus $k$-dominating function is a function $f : v (g)rightarrow {-1,0, 1}$ satisfying $sum_{winn[v]} f(w)ge k$ for every $vin v(g)$, where $n(v) ={u inv(g)mid uvin e(g)}$ and $n[v] =n(v)cup {v}$. the minimum ofthe values of $sum_{vin v(g)}f(v)$, taken over all minus$k$-dominating functions $f$, is called the minus $k$-dominationnumber and i...
For a graph $G=(V(G),E(G))$, an Italian dominating function (ID function) $f:V(G)\rightarrow\{0,1,2\}$ has the property that for every vertex $v\in V(G)$ with $f(v)=0$, either $v$ is adjacent to assigned $2$ under $f$ or least two vertices $1$ $f$. The weight of ID $\sum_{v\in V(G)}f(v)$. domination number minimum taken over all functions $G$. In this paper, we initiate study variant functions....
نمودار تعداد نتایج جستجو در هر سال
با کلیک روی نمودار نتایج را به سال انتشار فیلتر کنید