نتایج جستجو برای: recurrent network
تعداد نتایج: 785363 فیلتر نتایج به سال:
A recurrent neural network with a self-organizing structure based on the dynamic analysis of a task is presented in this paper. The stability of the recurrent neural network is guaranteed by design. A dynamic analysis method to sequence the subsystems of the recurrent neural network according to the fitness between the subsystems and the target system is developed. The network is trained with t...
This paper presents an improvement for an artificial neural network paradigm that has shown a significant potential for successful application to a class of optimization problems in structural engineering. The artificial neural network paradigm includes algorithms that belong to the class of single-layer, relaxationtype recurrent neural networks. The suggested improvement enhances the convergen...
A new trainable and recurrent neural optimization algorithm, which has potentially superior capabilities compared to existing neural search algorithms to compute high quality solutions of static optimization problems in a computationally efficient manner, is studied. Specifically, local stability analysis of the dynamics of a relaxation-based recurrent neural network, the Simultaneous Recurrent...
Forecasting a hydrologic time series has been one of the most complicated tasks owing to the wide range of data, the uncertainties in the parameters influencing the time series and also due to the non availability of adequate data. Recently, Artificial Neural Networks (ANNs) have become quite popular in time series forecasting in various fields. This paper demonstrates the use of ANNs to foreca...
in this paper, the application of neural networks for simulation and optimization of the cogeneration systems has been presented. cgam problem, a benchmark in cogeneration systems, is chosen as a casestudy. thermodynamic model includes precise modeling of the whole plant. for simulation of the steadysate behavior, the static neural network is applied. then using dynamic neural network, plant is...
In the context of learning in attractor neural networks (ANN) we discuss the issue of the constraints imposed by the requirement that the aaerents arriving at the neurons in the attractor network from the stimulus, compete successfully with the aaerents generated by the recurrent activity inside the network, in a situation in which the both sets of synaptic eecacies are weak and approximately e...
This paper presents the development of recurrent neural network based fuzzy inference system for identification and control of dynamic nonlinear plant. The structure and algorithms of fuzzy system based on recurrent neural network are described. To train unknown parameters of the system the supervised learning algorithm is used. As a result of learning, the rules of neuro-fuzzy system are forme...
نمودار تعداد نتایج جستجو در هر سال
با کلیک روی نمودار نتایج را به سال انتشار فیلتر کنید